186
Views
20
CrossRef citations to date
0
Altmetric
Review

Improvement of the fatigue life of titanium alloys for biomedical devices through microstructural control

&
Pages 481-488 | Published online: 09 Jan 2014

References

  • Niinomi M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A33A, 477–486 (2002).
  • Boyer R, Welsch G, Collings EW. Materials Handbook: Titanium Alloys. ASM, OH, USA 483–636 (1994).
  • American Society for Testing and Materials. Designation F136-08: Standard Specification for Wrought Titanium–6Al–4V ELI (Extra Low Interstitial) Alloy for Surgical Implants (UNS R56401). ASTM, PA, USA 80–84 (2009).
  • Okazaki Y. Effect of friction on corrosion resistance for implant alloys in physiological saline solution. J. Japan Inst. Metals61, 1123–1131 (1997).
  • American Society for Testing and Materials. Designation F1295-05: Standard Specification for Wrought Titanium–6Al–7Nb Alloy for Surgical Implant (UNS R56700). ASTM, PA, USA 536–539 (2009).
  • International Organization for Standardization. Implant for Sugery – Metallic Materials – Part 10: Wrought Titanium 5-Aluminum 2.5-Iron Alloy. ISO 5832-10 (1994).
  • American Society for Testing and Materials. Designation F2066-08: Standard Specification for Wrought Titanium–15Mo Alloy for Surgical Implant Applications (UNS R58150). ASTM, PA, USA 1052–1056 (2009).
  • American Society for Testing and Materials. Designation Draft: Standard Specification for Wrought Titanium–35Nb–7Zr–5Ta Alloy for Surgical Implant Applications. ASTM, PA, USA (2000).
  • Niinomi M. Metallic Biomaterials. J. Artif. Organs11, 105–110 (2008).
  • Niinomi M, Hattori T, Morikawa K et al. Development of low rigidity β-type titanium alloy for biomedical application. Mater. Trans.43, 2970–2977 (2002).
  • Kawahara H, Ochi S, Tanetani K et al. Biological test of dental materials. Effect of pure metals upon the mouse subcutaneous fibroblast. Starin L cell in tissue culture. J. Japan Soc. Dental Apparatus Mater.4, 65–75 (1968).
  • Steinemann SG. Corrosion of surgical implants – in vivo and in vitro tests. In: Evaluation of Biomaterials. Winter GD, Leray JL, de Groot K (Eds). Wiley, NY, USA 1–34 (1980).
  • Niinomi M. Development of high biocompatible titanium alloys. Function Mater.20, 36–44 (2000).
  • Niinomi M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A243, 231–236 (1998).
  • Morinaga M, Kato K, Kamimura T et al. Theoretical design of β-titanium alloys. Presented at: 7th International Conference on Titanium. San Diego, CA, USA, 29 June–2 July 1992.
  • Niinomi M. Fatigue characteristics of metallic biomaterials. Int. J. Fatigue29, 992–1000 (2009).
  • Akahori T, Niinomi M, Fukui H et al. Improvement in fatigue characteristics of newly developed β type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater. Sci. Eng. C25, 248–254 (2005).
  • Takeda J, Niinomi M, Akahori T et al. Effects of contact pressure and surface roughness on fretting fatigue characteristics of a high workable Ti–4.5%Al–3%V–2%Mo–2%Fe alloy. J. Japan I. Light Met.53, 563–569 (2003).
  • Takeda J, Niinomi M, Akahori T et al. Fretting fatigue characteristics with relating contact pressure and surface roughness of highly workable titanium alloy, Ti–4.5Al–3V–2Mo–2Fe. Mater. Trans.45, 1586–1593 (2004).
  • Takdeda J, Niinomi M, Akahori T et al. Effect of microstructure on fretting fatigue and sliding wear of highly workable titanium alloy, Ti–4.5Al–3V–2M–2Fe. Int. J. Fatigue26, 1003–1025 (2004).
  • Takeda J, Niinomi M, Akahori T et al. Contact pressure and fretting fatigue characteristics of highly workable titanium alloy with equiaxed α and Widdmnstättena structure. J. Japan Inst. Light Met.14, 661–667 (2005).
  • Yamamoto A, Kobayahsi T, Maruyama N. Fretting fatigue properties of Ti–6Al–4V alloy in pseudo-body fluid and evaluation of biocompatibility by cell culture method. J. Japan I. Met.59, 463–470 (1995).
  • Niinomi M, Akahori T, Yabunaka T et al. Fretting fatigue characteristics of β type titanium alloy for biomedical applications in air and simulated body environment. J. Iron Steel Inst. Japan88, 553–560 (2003).
  • Akahori T, Niinomi M, Takada J. Notch fatigue properties of a Ti–29Nb–13Ta–4.6Zr alloy for biomedical applications. J. Japan Inst. Light Met.,55, 575–581 (2005).
  • Bianvant K Le, Pommier S, Prioul C. Local texture and fatigue crack initiation in a Ti–6Al–4V titanium alloy. Fatigue Fract. Eng. Mater. Struct.25, 527–545 (2002).
  • Boyce BL, Roder O, Thompson AW, Ritchi R. Aspect of high-cycle fatigue performance in a Ti–6Al–4V alloy. In: Fatigue Behavior of Titanium Alloy. Boyer RR, Eylon D, Lütjering D (Eds). TMS, PA, USA 3–13 (1998).
  • Hines JA, Perers O, Lütjering D. Microcrack propagation in Ti–6Al–4V alloys. In: Fatigue Behavior of Titanium Alloy. Boyer RR, Eylon D, Lütjering D (Eds). TMS, PA, USA 15–22 (1998).
  • Thonpson AW. Relation between microstructure and fatigue properties of α–β titanium alloys. In: Fatigue Behavior of Titanium Alloy. Boyer RR, Eylon D, Lütjering D (Eds). TMS, PA, USA 23–30 (1998).
  • Akahori T, Niinomi M, Fukunaga K, Inagaki I. Effects of microstructure on the short crack initiation and propagation characteristics of biomedical α/β titanium alloys. Metall. Mater. Trans. A31A, 1949–1958 (2000).
  • Yoshimura H, Kimura K, Hayashi M et al. Ultra-fine equiaxed grains obtained by process of hydrogenation, aging and dehydrogenation in α+β type titanium alloys. J. Japan Inst. Light Met.55, 1375–1381 (1991).
  • Niinomi M, Gong B, Kobayashi T et al. Fracture characteristics of Ti–6Al–4V and Ti–5Al–2.5Fe with refined microstructure using hydrogen. Metall. Trans. A26, 1141–1151 (1995).
  • Yoshimura H, Kimura K, Hayashi M et al. Ultra-fine equiaxed grain refinement and mechanical properties in α+β type titanium alloys resultant from processing of hydrogenation, hot working, heat treatments, and dehydrogenation. J. Japan Inst. Light Met.56, 1352–1359 (1992).
  • Yoshimura H, Fujii Y, Wada S et al. Tensile, impact and fatigue properties of ultra-fine grained α+β type titanium alloys prepared by hydrogen treatment J. Japan Inst. Light Met.61 83–89 (1997).
  • Akahori T, Niinomi M, Suzuki A. Improvement in mechanical properties of dental cast Ti–6Al–7Nb by thermochemical processing, Metall. Mater. Trans. A33A, 503–510(2002).
  • Hanawa T, Hiromoto S, Yamamoto et al. Metallic biomaterials in body fluid and their surface modification. In: Structural Biomaterials for 21th Century. Niinomi M, Okabe T, Taleff EM (Eds). TMS, PA, USA 145–156 (2001).
  • Akahori T, Niinomi M, Nakai M et al. Wear and mechanical properties, and cell viability of gas-nitrided β-type Ti–Nb–Ta –Zr system alloy for biomedical applications. Mater. Trans.49, 166–174 (2008).
  • Tokaji K, Ogawa T, Shibata H. The effects of gas nitriding on fatigue behavior in titanium and titanium alloys. J. Mater. Eng. Perform.8, 159–167 (1999).
  • Rajasekaran R, Ganesh Sundara Raman S. Plain fatigue and fretting fatigue behavior of plasma nitrided Ti–6Al–4V. Mater. Lett.62, 2473–2475 (2008).
  • Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Tech. Advanced Mater.4, 445–454 (2003).
  • Akahori T, Niinomi M, Koyangai Y et al. Aging treatment and mechanical properties of Ti–29Nb–13Ta–4.6Zr alloy for biomaterial applications coated with bioactive calcium phosphate invert glass. J. Soc. Mater. Sci. Japan70, 314–321 (2006).
  • Li SJ, Niinomi M, Akahori T et al. Fatigue characteristics of bioactive glass–ceramic-coated Ti–29Nb–13Ta–4.6Zr for biomedical applications. Biomaterials25, 3341–3349 (2004).
  • Oh IH, Nomura N, Masahashi N et al. Mechanical properties of porous titanium compacts prepared by powder sintering. Scr. Mater.49, 1197–1202 (2003).
  • Nakai M, Niinomi M, Akahori T et al. Effect of silane couping treatment on mechanical properties of porous pure titanium filled with PMMA for biomedical applications. J. Soc. Mater. Sci. Japan72, 839–845 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.