244
Views
33
CrossRef citations to date
0
Altmetric
Review

Cardiac output monitoring in pediatric patients

, &
Pages 503-517 | Published online: 09 Jan 2014

References

  • Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJ. A new technique for measurement of cardiac output by thermodilution in man. Am. J. Cardiol.27(4), 392–396 (1971).
  • McLuckie A, Murdoch IA, Marsh MJ, Anderson D. A comparison of pulmonary and femoral artery thermodilution cardiac indices in paediatric intensive care patients. Acta Paediatr.85(3), 336–338 (1996).
  • Tibby SM, Hatherill M, Marsh MJ, Morrison G, Anderson D, Murdoch IA. Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Fick in ventilated children and infants. Intensive Care Med.23(9), 987–991 (1997).
  • Tibby SM, Murdoch IA. Monitoring cardiac function in intensive care. Arch. Dis. Child.88(1), 46–52 (2003).
  • Skowno JJ, Broadhead M. Cardiac output measurement in pediatric anesthesia. Paediatr. Anaesth.18(11), 1019–1028 (2008).
  • Morgan P, Al-Subaie N, Rhodes A. Minimally invasive cardiac output monitoring. Curr. Opin. Crit. Care14(3), 322–326 (2008).
  • de Waal EE, Wappler F, Buhre WF. Cardiac output monitoring. Curr. Opin. Anaesthesiol.22(1), 71–77 (2009).
  • Cholley BP, Payen D. Noninvasive techniques for measurements of cardiac output. Curr. Opin. Crit. Care11(5), 424–429 (2005).
  • Berton C, Cholley B. Equipment review: new techniques for cardiac output measurement – oesophageal Doppler, Fick principle using carbon dioxide, and pulse contour analysis. Crit. Care6(3), 216–221 (2002).
  • Chaney JC, Derdak S. Minimally invasive hemodynamic monitoring for the intensivist: current and emerging technology. Crit. Care Med.30(10), 2338–2345 (2002).
  • Funk DJ, Moretti EW, Gan TJ. Minimally invasive cardiac output monitoring in the perioperative setting. Anesth. Analg.108(3), 887–897 (2009).
  • Mathews L, Singh RK. Cardiac output monitoring. Ann. Card. Anaesth.11(1), 56–68 (2008).
  • Hofer CK, Ganter MT, Zollinger A. What technique should I use to measure cardiac output? Curr. Opin. Crit. Care13(3), 308–317 (2007).
  • Egan JR, Festa M, Cole AD, Nunn GR, Gillis J, Winlaw DS. Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med.31(4), 568–573 (2005).
  • Tibby SM, Hatherill M, Marsh MJ, Murdoch IA. Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch. Dis. Child.77(6), 516–518 (1997).
  • Gratama JW, Meuzelaar JJ, Dalinghaus M et al. Myocardial blood flow and VO2 in lambs with an aortopulmonary shunt during strenuous exercise. Am. J. Physiol.264(3 Pt 2), H938–H945 (1993).
  • Dean DA, Jia CX, Cabreriza SE et al. Validation study of a new transit time ultrasonic flow probe for continuous great vessel measurements. ASAIO J.42(5), M671–M676 (1996).
  • Hartman JC, Olszanski DA, Hullinger TG, Brunden MN. In vivo validation of a transit-time ultrasonic volume flow meter. J. Pharmacol. Toxicol. Methods31(3), 153–160 (1994).
  • Lundell A, Bergqvist D, Mattsson E, Nilsson B. Volume blood flow measurements with a transit time flowmeter: an in vivo and in vitro variability and validation study. Clin. Physiol.13(5), 547–557 (1993).
  • Lemson J, de Boode WP, Hopman JC, Singh SK, van der Hoeven JG. Validation of transpulmonary thermodilution cardiac output measurement in a pediatric animal model. Pediatr. Crit. Care Med.9(3), 313–319 (2008).
  • Tibby S. Transpulmonary thermodilution: finally, a gold standard for pediatric cardiac output measurement. Pediatr. Crit. Care Med.9(3), 341–342 (2008).
  • Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet1(8476), 307–310 (1986).
  • Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J. Clin. Monit. Comput.15(2), 85–91 (1999).
  • Cecconi M, Rhodes A, Poloniecki J, Della RG, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies – with specific reference to the measurement of cardiac output. Crit. Care13(1), 201 (2009).
  • Spohr F, Hettrich P, Bauer H, Haas U, Martin E, Bottiger BW. Comparison of two methods for enhanced continuous circulatory monitoring in patients with septic shock. Intensive Care Med.33(10), 1805–1810 (2007).
  • Squara P, Cecconi M, Rhodes A, Singer M, Chiche JD. Tracking changes in cardiac output: methodological considerations for the validation of monitoring devices. Intensive Care Med.35(10), 1801–1808 (2009).
  • Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ. Res.10(), 393–407 (1962).
  • Nadeau S, Noble WH. Limitations of cardiac output measurements by thermodilution. Can. Anaesth. Soc. J.33(6), 780–784 (1986).
  • Nishikawa T, Dohi S. Errors in the measurement of cardiac output by thermodilution. Can. J. Anaesth.40(2), 142–153 (1993).
  • Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth. Analg.110(3), 799–811 (2010).
  • Graves PW, Davis AL, Maggi JC, Nussbaum E. Femoral artery cannulation for monitoring in critically ill children: prospective study. Crit. Care Med.18(12), 1363–1366 (1990).
  • Agnoletti G, Boudjemline Y, Largen E et al. Use of 3 French catheters for diagnostic and interventional procedures in newborns and small infants. Heart89(11), 1350–1351 (2003).
  • Ruperez M, Lopez-Herce J, Garcia C, Sanchez C, Garcia E, Vigil D. Comparison between cardiac output measured by the pulmonary arterial thermodilution technique and that measured by the femoral arterial thermodilution technique in a pediatric animal model. Pediatr. Cardiol.25(2), 119–123 (2004).
  • Pauli C, Fakler U, Genz T, Hennig M, Lorenz HP, Hess J. Cardiac output determination in children: equivalence of the transpulmonary thermodilution method to the direct Fick principle. Intensive Care Med.28(7), 947–952 (2002).
  • Weyland A, Wietasch G, Hoeft A et al. [The effect of an intracardiac left-right shunt on thermodilution measurements of cardiac output. An extracorporeal circulation model]. Anaesthesist44(1), 13–23 (1995).
  • Pearl RG, Siegel LC. Thermodilution cardiac output measurement with a large left-to-right shunt. J. Clin. Monit.7(2), 146–153 (1991).
  • Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest124(5), 1900–1908 (2003).
  • Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med.33(3), 448–453 (2007).
  • Lopez-Herce J, Bustinza A, Sancho L et al. Cardiac output and blood volume parameters using femoral arterial thermodilution. Pediatr. Int.51(1), 59–65 (2009).
  • Lemson J, Backx AP, van Oort AM, Bouw TP, van der Hoeven JG. Extravascular lung water measurement using transpulmonary thermodilution in children. Pediatr. Crit. Care Med.10(2), 227–233 (2009).
  • Cecchetti C, Lubrano R, Cristaldi S et al. Relationship between global end-diastolic volume and cardiac output in critically ill infants and children. Crit. Care Med.36(3), 928–932 (2008).
  • Schiffmann H, Erdlenbruch B, Singer D et al. Assessment of cardiac output, intravascular volume status, and extravascular lung water by transpulmonary indicator dilution in critically ill neonates and infants. J. Cardiothorac. Vasc. Anesth.16(5), 592–597 (2002).
  • Schmidt S, Westhoff TH, Hofmann C et al. Effect of the venous catheter site on transpulmonary thermodilution measurement variables. Crit. Care Med.35(3), 783–786 (2007).
  • Michard F. Looking at transpulmonary thermodilution curves: the cross-talk phenomenon. Chest126(2), 656–657 (2004).
  • Lemson J, Eijk RJ, van der Hoeven JG. The “cross-talk phenomenon” in transpulmonary thermodilution is flow dependent. Intensive Care Med.32(7), 1092 (2006).
  • Linton R, Band D, O’Brien T, Jonas M, Leach R. Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit. Care Med.25(11), 1796–1800 (1997).
  • Linton RA, Jonas MM, Tibby SM et al. Cardiac output measured by lithium dilution and transpulmonary thermodilution in patients in a paediatric intensive care unit. Intensive Care Med.26(10), 1507–1511 (2000).
  • Jonas MM, Tanser SJ. Lithium dilution measurement of cardiac output and arterial pulse waveform analysis: an indicator dilution calibrated beat-by-beat system for continuous estimation of cardiac output. Curr. Opin. Crit. Care8(3), 257–261 (2002).
  • Jonas MM, Linton RAF, O’Brien TK et al. The pharmacokinetics of intravenous lithium chloride in patients and normal volunteers. Lithium notes in biology and medicine. J. Trace Microprobe Techn.19(2), 313–320 (2001).
  • Imai T, Takahashi K, Fukura H, Morishita Y. Measurement of cardiac output by pulse dye densitometry using indocyanine green: a comparison with the thermodilution method. Anesthesiology87(4), 816–822 (1997).
  • Reekers M, Simon MJ, Boer F et al. Cardiovascular monitoring by pulse dye densitometry or arterial indocyanine green dilution. Anesth. Analg.109(2), 441–446 (2009).
  • Hofer CK, Buhlmann S, Klaghofer R, Genoni M, Zollinger A. Pulsed dye densitometry with two different sensor types for cardiac output measurement after cardiac surgery: a comparison with the thermodilution technique. Acta Anaesthesiol. Scand.48(5), 653–657 (2004).
  • Kroon M, Groeneveld AB, Smulders YM. Cardiac output measurement by pulse dye densitometry: comparison with pulmonary artery thermodilution in post-cardiac surgery patients. J. Clin. Monit. Comput.19(6), 395–399 (2005).
  • Kusaka T, Okubo K, Nagano K, Isobe K, Itoh S. Cerebral distribution of cardiac output in newborn infants. Arch. Dis. Child. Fetal Neonatal Ed.90(1), F77–F78 (2005).
  • Nagano K, Kusaka T, Okubo K et al. Estimation of circulating blood volume in infants using the pulse dye densitometry method. Paediatr. Anaesth.15(2), 125–130 (2005).
  • Aladangady N, Leung T, Costeloe K, Delpy D. Measuring circulating blood volume in newborn infants using pulse dye densitometry and indocyanine green. Paediatr. Anaesth.18(9), 865–871 (2008).
  • Taguchi N, Nakagawa S, Miyasaka K, Fuse M, Aoyagi T. Cardiac output measurement by pulse dye densitometry using three wavelengths. Pediatr. Crit. Care Med.5(4), 343–350 (2004).
  • Krivitski NM, Kislukhin VV, Thuramalla NV. Theory and in vitro validation of a new extracorporeal arteriovenous loop approach for hemodynamic assessment in pediatric and neonatal intensive care unit patients. Pediatr. Crit. Care Med.9(4), 423–428 (2008).
  • de Boode WP, van Heijst AF, Hopman JC, Tanke RB, van der Hoeven HG, Liem KD. Cardiac output measurement using an ultrasound dilution method: a validation study in ventilated piglets. Pediatr. Crit. Care Med.11(1), 103–108 (2010).
  • Schulenberg A, Harmon W, Rubenstein J. A novel method to measure cardiac output in the pediatric ICU: animal validation and preliminary clinical study. Crit. Care Med.34(12), A12 (2007).
  • Mayer J, Suttner S. Cardiac output derived from arterial pressure waveform. Curr. Opin. Anaesthesiol.22(6), 804–808 (2009).
  • Langewouters GJ, Wesseling KH, Goedhard WJ. The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J. Biomech.17(6), 425–435 (1984).
  • Godje O, Hoke K, Goetz AE et al. Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit. Care Med.30(1), 52–58 (2002).
  • Felbinger TW, Reuter DA, Eltzschig HK, Moerstedt K, Goedje O, Goetz AE. Comparison of pulmonary arterial thermodilution and arterial pulse contour analysis: evaluation of a new algorithm. J. Clin. Anesth.14(4), 296–301 (2002).
  • Lopez-Herce J, Ruperez M, Sanchez C, Garcia C, Garcia E. Correlation between cardiac output measured by the femoral arterial thermodilution technique pulmonary arterial and that measured by contour pulse analysis in a paediatric animal model. J. Clin. Monit. Comput.20(1), 19–23 (2006)
  • Piehl MD, Manning JE, McCurdy SL et al. Pulse contour cardiac output analysis in a piglet model of severe hemorrhagic shock. Crit. Care Med.36(4), 1189–1195 (2008).
  • Mahajan A, Shabanie A, Turner J, Sopher MJ, Marijic J. Pulse contour analysis for cardiac output monitoring in cardiac surgery for congenital heart disease. Anesth. Analg.97(5), 1283–1288 (2003).
  • Fakler U, Pauli C, Balling G et al. Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery. J. Thorac. Cardiovasc. Surg.133(1), 224–228 (2007).
  • Kim JJ, Dreyer WJ, Chang AC, Breinholt JP III, Grifka RG. Arterial pulse wave analysis: an accurate means of determining cardiac output in children. Pediatr. Crit. Care Med.7(6), 532–535 (2006).
  • Manecke GR. Edwards FloTrac sensor and Vigileo monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev. Med. Devices2(5), 523–527 (2005).
  • Compton FD, Zukunft B, Hoffmann C, Zidek W, Schaefer JH. Performance of a minimally invasive uncalibrated cardiac output monitoring system (FloTrac/Vigileo) in haemodynamically unstable patients. Br. J. Anaesth.100(4), 451–456 (2008).
  • Mayer J, Boldt J, Poland R, Peterson A, Manecke GR Jr. Continuous arterial pressure waveform-based cardiac output using the FloTrac/Vigileo: a review and meta-analysis. J. Cardiothorac. Vasc. Anesth.23(3), 401–406 (2009).
  • Sakka SG, Kozieras J, Thuemer O, van Hout N. Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br. J. Anaesth.99(3), 337–342 (2007).
  • Scheeren TW, Wiesenack C, Compton FD et al. Performance of a minimally invasive cardiac output monitoring system (FloTrac/Vigileo). Br. J. Anaesth.101(2), 279–280 (2008).
  • Romano SM, Pistolesi M. Assessment of cardiac output from systemic arterial pressure in humans. Crit. Care Med.30(8), 1834–1841 (2002).
  • Calamandrei M, Mirabile L, Muschetta S, Gensini GF, De Simone L, Romano SM. Assessment of cardiac output in children: a comparison between the pressure recording analytical method and Doppler echocardiography. Pediatr. Crit. Care Med.9(3), 310–312 (2008).
  • Brown JM. Use of echocardiography for hemodynamic monitoring. Crit. Care Med.30(6), 1361–1364 (2002).
  • Lai WW, Geva T, Shirali GS et al. Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J. Am. Soc. Echocardiogr.19(12), 1413–1430 (2006).
  • Lang RM, Bierig M, Devereux RB et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr.18(12), 1440–1463 (2005).
  • Lu X, Xie M, Tomberlin D et al. How accurately, reproducibly, and efficiently can we measure left ventricular indices using M-mode, 2-dimensional, and 3-dimensional echocardiography in children? Am. Heart J.155(5), 946–953 (2008).
  • Turner MA. Doppler-based hemodynamic monitoring: a minimally invasive alternative. AACN Clin. Issues14(2), 220–231 (2003).
  • Chew MS, Poelaert J. Accuracy and repeatability of pediatric cardiac output measurement using Doppler: 20-year review of the literature. Intensive Care Med.29(11), 1889–1894 (2003).
  • Cholley BP, Singer M. Esophageal Doppler: noninvasive cardiac output monitor. Echocardiography20(8), 763–769 (2003).
  • Murdoch IA, Marsh MJ, Tibby SM, McLuckie A. Continuous haemodynamic monitoring in children: use of transoesophageal Doppler. Acta Paediatr.84(7), 761–764 (1995).
  • Tibby SM, Hatherill M, Murdoch IA. Use of transesophageal Doppler ultrasonography in ventilated pediatric patients: derivation of cardiac output. Crit. Care Med.28(6), 2045–2050 (2000).
  • Tibby SM, Hatherill M, Durward A, Murdoch IA. Are transoesophageal Doppler parameters a reliable guide to paediatric haemodynamic status and fluid management? Intensive Care Med.27(1), 201–205 (2001).
  • Mohan UR, Britto J, Habibi P, de MC, Nadel S. Noninvasive measurement of cardiac output in critically ill children. Pediatr. Cardiol.23(1), 58–61 (2002).
  • Schubert S, Schmitz T, Weiss M et al. Continuous, non-invasive techniques to determine cardiac output in children after cardiac surgery: evaluation of transesophageal Doppler and electric velocimetry. J. Clin. Monit. Comput.22(4), 299–307 (2008).
  • Knirsch W, Kretschmar O, Tomaske M et al. Comparison of cardiac output measurement using the CardioQP oesophageal Doppler with cardiac output measurement using thermodilution technique in children during heart catheterisation. Anaesthesia63(8), 851–855 (2008).
  • Schober P, Loer SA, Schwarte LA. Perioperative hemodynamic monitoring with transesophageal Doppler technology. Anesth. Analg.109(2), 340–353 (2009).
  • Knirsch W, Kretschmar O, Tomaske M et al. Cardiac output measurement in children: comparison of the ultrasound cardiac output monitor with thermodilution cardiac output measurement. Intensive Care Med.34(6), 1060–1064 (2008).
  • Meyer S, Todd D, Shadboldt B. Assessment of portable continuous wave Doppler ultrasound (ultrasonic cardiac output monitor) for cardiac output measurements in neonates. J. Paediatr. Child Health45(7–8), 464–468 (2009).
  • Nidorf SM, Picard MH, Triulzi MO et al. New perspectives in the assessment of cardiac chamber dimensions during development and adulthood. J. Am. Coll. Cardiol.19(5), 983–988 (1992).
  • van Lelyveld-Haas LE, van Zanten AR, Borm GF, Tjan DH. Clinical validation of the non-invasive cardiac output monitor USCOM-1A in critically ill patients. Eur. J. Anaesthesiol.25(11), 917–924 (2008).
  • Critchley LA, Peng ZY, Fok BS, Lee A, Phillips RA. Testing the reliability of a new ultrasonic cardiac output monitor, the USCOM, by using aortic flowprobes in anesthetized dogs. Anesth. Analg.100(3), 748–753 (2005).
  • Phillips R, Paradisis M, Evans N, Southwell D, Burstdow D, West M. Cardiac output measurement in preterm neonates: validation of USCOM against echocardiography. Crit. Care10(Suppl. 1), S144 (2006).
  • Buheitel G, Scharf J, Hofbeck M, Singer H. Estimation of cardiac index by means of the arterial and the mixed venous oxygen content and pulmonary oxygen uptake determination in the early post-operative period following surgery of congenital heart disease. Intensive Care Med.20(7), 500–503 (1994).
  • Wippermann CF, Huth RG, Schmidt FX, Thul J, Betancor M, Schranz D. Continuous measurement of cardiac output by the Fick principle in infants and children: comparison with the thermodilution method. Intensive Care Med.22(5), 467–471 (1996).
  • Botte A, Leclerc F, Riou Y et al. Evaluation of a noninvasive cardiac output monitor in mechanically ventilated children. Pediatr. Crit. Care Med.7(3), 231–236 (2006).
  • Levy RJ, Chiavacci RM, Nicolson SC et al. An evaluation of a noninvasive cardiac output measurement using partial carbon dioxide rebreathing in children. Anesth. Analg.99(6), 1642–7, table (2004).
  • Jaffe MB. Partial CO2 rebreathing cardiac output – operating principles of the NICO system. J. Clin. Monit. Comput.15(6), 387–401 (1999).
  • Tibby SM. Indirect Fick principle: great idea, but can we use it in critical care? Pediatr Crit. Care Med.7(3), 284–285 (2006).
  • de Boode WP, Hopman JC, Daniels O, van der Hoeven HG, Liem KD. Cardiac output measurement using a modified carbon dioxide Fick method: a validation study in ventilated lambs. Pediatr. Res.61(3), 279–283 (2007).
  • Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH. Development and evaluation of an impedance cardiac output system. Aerosp. Med.37(12), 1208–1212 (1966).
  • Osypka MJ, Bernstein DP. Electrophysiologic principles and theory of stroke volume determination by thoracic electrical bioimpedance. AACN Clin. Issues10(3), 385–399 (1999).
  • Osthaus WA, Huber D, Beck C et al. Comparison of electrical velocimetry and transpulmonary thermodilution for measuring cardiac output in piglets. Paediatr. Anaesth.17(8), 749–755 (2007).
  • Tomaske M, Knirsch W, Kretschmar O et al. Cardiac output measurement in children: comparison of Aesculon cardiac output monitor and thermodilution. Br. J. Anaesth.100(4), 517–520 (2008).
  • Tomaske M, Knirsch W, Kretschmar O et al. Evaluation of the Aesculon cardiac output monitor by subxiphoidal Doppler flow measurement in children with congenital heart defects. Eur. J. Anaesthesiol.26(5), 412–415 (2009).
  • Norozi K, Beck C, Osthaus WA, Wille I, Wessel A, Bertram H. Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br. J. Anaesth.100(1), 88–94 (2008).
  • Raval NY, Squara P, Cleman M, Yalamanchili K, Winklmaier M, Burkhoff D. Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J. Clin. Monit. Comput.22(2), 113–119 (2008).
  • Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C. Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med.33(7), 1191–1194 (2007).
  • Squara P, Rotcajg D, Denjean D, Estagnasie P, Brusset A. Comparison of monitoring performance of bioreactance vs. pulse contour during lung recruitment maneuvers. Crit. Care13(4), R125 (2009).
  • Penaz J. Photoelectric measurement of blood pressure, volume and flow in the finger. In: Digest of the International Federation for Medical and Biological Engineering. Dresden, Germany 104 (1974).
  • Wesseling KH, Settels WB, Klawer WH. On the indirect registration of finger blood pressure after penaz. Funct. Biol. Med.1, 245–250 (1982)
  • Kurki TS, Smith NT, Sanford TJ Jr, Head N. Pulse oximetry and finger blood pressure measurement during open-heart surgery. J. Clin. Monit.5(4), 221–228 (1989).
  • Bos WJ, van GJ, van Montfrans GA, van den Meiracker AH, Wesseling KH. Reconstruction of brachial artery pressure from noninvasive finger pressure measurements. Circulation94(8), 1870–1875 (1996).
  • Imholz BP, Wieling W, van Montfrans GA, Wesseling KH. Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc. Res.38(3), 605–616 (1998).
  • Eeftinck Schattenkerk DW, van Lieshout JJ, van den Meiracker AH et al. Nexfin noninvasive continuous blood pressure validated against Riva-Rocci/Korotkoff. Am. J. Hypertens.22(4), 378–383 (2009).
  • Association for the advancement of medical instrumentation (AAMI). American National Standard. Electronic or Automated Sphygmomanometers. ANSI/AAMI SP 10-1992. AAMI, Arlington, VA, USA 40 (1993).
  • Andriessen P, Schraa O, van DB-R et al. Feasibility of noninvasive continuous finger arterial blood pressure measurements in very young children, aged 0–4 years. Pediatr. Res.63(6), 691–696 (2008).
  • Hofhuizen CM, Lemson J, Hemelaar AEA, Singh SK, van der Hoeven HG, Scheffer GJ. Continuous non-invasive finger blood pressure monitoring reflects blood pressure changes in children undergoing cardiac surgery. Br. J. Anaesth. (2010) (In press).
  • Lemson J, Hofhuizen CM, Schraa O, Settels JJ, Scheffer GJ, van der Hoeven JG. The reliability of continuous noninvasive finger blood pressure measurement in critically ill children. Anesth. Analg.108(3), 814–821 (2009).
  • de Wilde RB, Schreuder JJ, van den Berg PC, Jansen JR. An evaluation of cardiac output by five arterial pulse contour techniques during cardiac surgery. Anaesthesia62(8), 760–768 (2007).
  • Stover JF, Stocker R, Lenherr R et al. Noninvasive cardiac output and blood pressure monitoring cannot replace an invasive monitoring system in critically ill patients. BMC Anesthesiol.9, 6 (2009).
  • Pitt MS, Marshall P, Diesch JP, Hainsworth R. Cardiac output by Portapres. Clin. Sci. (Lond.)106(4), 407–412 (2004).
  • Tam E, Azabji KM, Cautero M et al. Correction of cardiac output obtained by Modelflow from finger pulse pressure profiles with a respiratory method in humans. Clin. Sci. (Lond.)106(4), 371–376 (2004).
  • Azabji KM, Lador F, Licker M et al. Cardiac output by Modelflow method from intra-arterial and fingertip pulse pressure profiles. Clin. Sci. (Lond.)106(4), 365–369 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.