769
Views
155
CrossRef citations to date
0
Altmetric
Review

Tissue optical immersion clearing

, &
Pages 825-842 | Published online: 09 Jan 2014

References

  • Handbook of Optical Biomedical Diagnostics. Tuchin VV (Ed.). PM107 SPIE Press, Bellingham, WA, USA (2002).
  • Biomedical Photonics Handbook. Vo-Dinh T (Ed.). CRC Press, Boca Raton, FL, USA (2003).
  • Tuchin VV. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. SPIE Press, Bellingham, WA, USA (2007).
  • Boas DA. A fundamental limitation of linearized algorithms for diffuse optical tomography. Opt. Express1, 404–413 (1997).
  • Smithpeter CL, Dunn AK, Welch AJ, Richards-Kortum R. Penetration depth limits of in vivo confocal reflectance imaging. Appl. Opt.37, 2749–2754 (1998).
  • Tuchin VV. A clear vision for laser diagnostics (review). IEEE J. Sel. Top. Quantum Electron13, 1621–1628 (2007).
  • Tuchin VV. Optical Clearing of Tissues and Blood. PM154, SPIE Press Bellingham, WA, USA (2006).
  • Genina EA, Bashkatov AN, Sinichkin YuP, Tuchin VV. Optical clearing of the eye sclera in vivo caused by glucose. Quantum Electronics36(12), 1119–1124 (2006).
  • Vargas G, Barton JK, Welch AJ. Use of hyperosmotic chemical agent to improve the laser treatment of cutaneous vascular lesions. J. Biomed. Opt.13(2), 021114 (2008).
  • Khan MH, Chess S, Choi B, Kelly KM, Nelson JS. Can topically applied optical clearing agents increase the epidermal damage threshold and enhance therapeutic efficacy? Lasers Surg. Med.35, 93–95 (2004).
  • Agrba PD, Kirillin MY, Abelevich AI, Zagaynova EV, Kamensky VA. Compression as a method for increasing the informativity of optical coherence tomography of biotissues. Optics and Spectroscopy107(6), 853–858 (2009).
  • Guzelsu N, Federici JF, Lim HC, Chauhdry HR, Ritter AB, Findley T. Measurement of skin strech via light reflection. J. Biomed. Opt.8, 80–86 (2003).
  • Rylander CG, Stumpp OF, Milner TE et al. Dehydration mechanism of optical clearing in tissue. J. Biomed. Opt.11(4), 041117 (2006).
  • Lin W-C, Motamedi M, Welch AJ. Dynamics of tissue optics during laser heating of turbid media. Appl. Opt.35(19), 3413–3420 (1996).
  • Tuchin VV, Wang LV, Zimnyakov DA. Optical Polarization in Biomedical Applications. Springer-Verlag, New York, NY, USA (2006).
  • Drezek R, Dunn A, Richards-Kortum R. Light scattering from cells: finite-difference time-domain simulations and goniometric measurements. Appl. Opt.38(16), 3651–3661 (1999).
  • Sokolov K, Drezek R, Gossagee K, Richards-Kortum R. Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology. Opt. Express5, 302–317 (1999).
  • Leonard DW, Meek KM. Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma. Biophysical J.72, 1382–1387 (1997).
  • Borovoi AG, Naats EI, Oppel UG. Scattering of light by a red blood cell. J. Biomed. Opt.3, 364–372 (1998).
  • Yaroslavsky AN, Priezzhev AV, Rodriguez J, Yaroslavsky IV, Battarbee H. Optics of blood. In: Handbook of Optical Biomedical Diagnostics (Chapter 2). Tuchin VV (Ed.). PM107 SPIE Press, Bellingham, WA, USA, 169–216 (2002).
  • Mazarevica G, Freivalds T, Jurka A. Properties of erythrocyte light refraction in diabetic patients. J. Biomed. Opt.7, 244–247 (2002).
  • Friebel M, Meinke M. Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100 nm dependent on concentration. Appl. Opt.45(12), 2838–2842 (2006).
  • Tuchin VV, Maksimova IL, Zimnyakov DA, Kon IL, Mavlutov AH, Mishin AA. Light propagation in tissues with controlled optical properties. J. Biomed. Opt.2, 401–417 (1997).
  • Vargas G, Chan EK, Barton JK, Rylander III HG, Welch AJ. Use of an agent to reduce scattering in skin. Laser Surg. Med.24, 133–141 (1999).
  • Wang RK, Elder JB. Propylene glycol as a contrasting agent for optical coherence tomography to image gastro-intestinal tissues. Lasers Surg. Med.30, 201–208 (2002).
  • Bashkatov AN, Genina EA, Sinichkin YuP, Kochubey VI, Lakodina NA, Tuchin VV. Glucose and mannitol diffusion in human dura mater. Biophys. J.85(5), 3310–3318 (2003).
  • Bashkatov AN, Korolevich AN, Tuchin VV et al.In vivo investigation of human skin optical clearing and blood microcirculation under the action of glucose solution. Asian J. Physics15(1), 1–14 (2006).
  • Genina EA, Bashkatov AN, Tuchin VV. Glucose-induced optical clearing effects in tissues and blood. In: Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues. Tuchin VV (Ed.). Taylor & Francis Group LLC, CRC Press, FL, USA 657–692 (2009).
  • Genina EA, Bashkatov AN, Korobko AA et al. Optical clearing of human skin: comparative study of permeability and dehydration of intact and photothermally perforated skin. J. Biomed. Opt.13(2), 021102 (2008).
  • Yeh AT, Choi B, Nelson JS, Tromberg BJ. Reversible dissociation of collagen in tissues. J. Invest. Dermatol.121, 1332–1335 (2003).
  • Genina EA, Bashkatov AN, Tuchin VV. Optical clearing of cranial bone. Advanced Optical Technologies DOI: 10.1155/2008/267867 (2008) (Epub head of print).
  • Genina ÉA, Bashkatov AN, Kochubey VI, Tuchin VV. Optical clearing of human dura mater. Optics and Spectroscopy98(3), 515–521 (2005).
  • Wen X, Mao Z, Han Zh, Tuchin VV, Zhu D. In vivo skin optical clearing by glycerol solutions: mechanism. J. Biophoton.3(1–2), 44–52 (2010).
  • Huang Y, Meek KM. Swelling studies on the cornea and sclera: the effect of pH and ionic strength. Biophys. J.77, 1655–1665 (1999).
  • Kon IL, Bakutkin VV, Bogomolova NV, Tuchin SV, Zimnyakov DA, Tuchin VV. Trazograph influence on osmotic pressure and tissue structures of human sclera. Proc. SPIE2971, 198–206 (1997).
  • Roggan A, Friebel M, Dorschel K, Hahn A, Mueller G. Optical properties of circulating human blood in the wavelength range 400–2500 nm. J. Biomed. Opt.4, 36–46 (1999).
  • Fine I, Fikhte B, Shvartsman LD. RBC aggregation assisted light transmission through blood and occlusion oximetry. Proc. SPIE4162, 130–139 (2000).
  • Tuchin VV, Xu X, Wang RK. Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood. Appl. Opt.41(1), 258–271 (2002).
  • Bashkatov AN, Zhestkov DM, Genina ÉA, Tuchin VV. Immersion clearing of human blood in the visible and near IR spectral range. Optics and Spectroscopy98(4), 695–703 (2005).
  • Tuchin VV, Zhestkov DM, Bashkatov AN, Genina EA. Theoretical study of immersion optical clearing of blood in vessels at local hemolysis. Optics Express12(13), 2966–2971 (2004).
  • Bashkatov AN, Genina EA, Kochubey VI, Kamenskikh TG, Tuchin VV. Optical clearing of human eye sclera. Proc. SPIE7163, 71631R (2009).
  • Galanzha EI, Tuchin VV, Solovieva AV, Stepanova TV, Luo Q, Cheng H. Skin backreflectance and microvascular system functioning at the action of osmotic agents. J. Phys. D. Appl. Phys.36, 1739–1746 (2003).
  • Zhu D, Zhang J, Cui H, Mao Z, Li P, Luo Q. Short-term and long-term effects of optical clearing agents on blood vessels in chick chorioallantoic membrane. J. Biomed. Opt.13(2), 021106 (2008).
  • Mao Z, Zhu D, Hu Y, Wen X, Han Z. Influence of alcohols on the optical clearing effect of skin in vitro.J. Biomed. Opt.13(2), 021104 (2008).
  • Jiang J, Wang RK. Comparing the synergetic effects of oleic acid and dimethyl sulfoxide as vehicles for optical clearing of skin tissue in vitro.Phys. Med. Biol.49, 5283–5294 (2004).
  • Xu X, Zhu Q. Evaluation of skin optical clearing enhancement with azone as a penetration enhancer. Opt. Commun.279, 223–228 (2007).
  • Zhi Z, Han Z, Luo Q, Zhu D. Improve optical clearing of skin in vitro with propylene glycol as a penetration enhancer. J. Innov. Opt. Health Sci.2(3), 269–278 (2009).
  • Jiang J, Boese M, Turner P, Wang RK. Penetration kinetics of dimethyl sulphoxide and glycerol in dynamic optical clearing of porcine skin tissue in vitro studied by Fourier transform infrared spectroscopic imaging. J. Biomed. Opt.13(2), 021105 (2008).
  • Kurihara-Bergstrom T, Knutson K, de Noble LJ, Goates CY. Percutaneous absorption enhancement of an ionic molecule by ethanol–water system in human skin. Pharm. Res.7, 762–766 (1990).
  • Williams AC, Barry BW. Penetration enhancers. Adv. Drug Deliv. Rev.56, 603–618 (2004).
  • Genina EA, Bashkatov AN, Tuchin VV. Effect of ethanol on the transport of methylene blue through stratum corneum. Med. Laser Appl.23(1), 31–38 (2008).
  • Lee S, McAuliffe DJ, Kollias N, Flotte TJ, Doukas AG. Photomechanical delivery of 100-nm microspheres through the stratum corneum: implications for transdermal drug delivery. Laser Surg. Med.31, 207–210 (2002).
  • Weigmann HJ, Lademann J, Schanzer S et al. Correlation of the local distribution of topically applied substances inside the stratum corneum determined by tape stripping to differences in bioavailability. Skin Pharmacol. Appl. Skin Physiol.14, 93–103 (2001).
  • Lee WR, Tsai RY, Fang CL, Liu CJ, Hu CH, Fang JY. Microdermabrasion as a novel tool to enhance drug delivery via the skin: an animal study. J. Dermatol. Surg.32, 1013–1022 (2006).
  • Liu C, Zhi Z, Tuchin VV, Zhu D. Combined laser and glycerol enhancing skin optical clearing. Proc. SPIE7186, 71860D (2009).
  • Stumpp O, Welch AJ, Neev J. Enhancement of transdermal skin clearing agent delivery using a 980 nm diode laser. Lasers Surg. Med.37, 278–285 (2005).
  • Nugroho AK, Li GL, Danhof M, Bouwstra JA. Transdermal iontophoresis of rotigotine across human stratum corneum in vitro: influence of pH and NaCl concentration. Pharm. Res.21(5), 844–850 (2004).
  • Tezel A, Mitragotri S. Interaction of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys. J.85, 3502–3512 (2003).
  • Stumpp O, Welch AJ. Injection of glycerol into porcine skin for optical skin clearing with needle-free injection gun and determination of agent distribution using OCT and fluorescence microscopy. Proc. SPIE4949, 44–50 (2003).
  • Tuchin VV, Altshuler GB, Gavrilova AA et al. Optical clearing of skin using flashlamp-induced enhancement of epidermal permeability. Lasers Surg. Med.38, 824–836 (2006).
  • Yoon J, Son T, Choi E, Choi B, Nelson JS, Jung B. Enhancement of optical skin clearing efficacy using a microneedle roller. J. Biomed. Opt.13(2), 021103 (2008).
  • Stumpp O, Chen B, Welch AJ. Using sandpaper for noninvasive transepidermal optical skin clearing agent delivery. J. Biomed. Opt.11(4), 041118 (2006).
  • Fujimoto JG, Brezinski ME. Optical coherence tomography imaging. In: Biomedical Photonics Handbook. Vo-Dinh T (Ed.). CRC Press, Boca Rotan, FL, USA (2003).
  • Larin KV, Tuchin VV. Functional imaging and assessment of glucose diffusion in epithelial tissues with optical coherence tomography. Quantum Electronics6, 551–556 (2008).
  • Larin KV, Ghosn MG, Ivers SN, Tellez A, Granada JF. Quantification of glucose diffusion in arterial tissues by using optical coherence tomography. Laser Phys. Lett.4, 312–317 (2007).
  • Maruo K, Tsurugi M, Tamura M, Ozaki Y. In vivo nondestructive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy. Appl. Spectrosc.57, 1236–1244 (2003).
  • Schneckenburger H, Steiner R, Strauss W, Stock K, Sailer R. Fluorescence technologies in biomedical diagnostics. In: Optical Biomedical Diagnostics. Tuchin VV (Ed.). PM107, SPIE Press, Bellingham, WA, USA, 725–785 (2002).
  • Chang SK, Mirabal YN, Atkinson EN et al. Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer. J. Biomed. Opt.10(2), 024031 (2005).
  • Borisova E, Troyanova P, Pavlova P, Avramov L. Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy. Quantum Electronics6, 597–605 (2008).
  • Yaroslavsky AN, Neel V, Anderson RR. Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging. J. Invest. Dermatol.121, 259–266 (2003).
  • Fantini S, Heffer EL, Pera VE, Sassaroli A, Liu N. Spatial and spectral information in optical mammography. Technol. Cancer Res. Treat.4, 471–482 (2005).
  • Gerger A, Koller S, Kern T et al. Diagnostic applicability of in vivo confocal laser scanning microscopy in melanocytic skin tumors. J. Invest. Dermatol.124, 493–498 (2005).
  • Tseng S-J, Lee Y-H, Chen Z-H, Lin H-H, Lin C-Y, Tang S-C. Integration of optical clearing and optical sectioning microscopy for three-dimensional imaging of natural biomaterial scaffolds in thin sections. J. Biomed. Opt.14(4), 044004 (2009).
  • Meglinsky IV, Bashkatov AN, Genina EA, Churmakov DYu, Tuchin VV. Study of the possibility of increasing the probing depth by the method of reflection confocal microscopy upon immersion clearing of near-surface human skin layers. Laser Physics13(1), 65–69 (2003).
  • Dickie R, Bachoo RM, Rupnick MA et al. Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy. Microvascular Res.72(1–2), 20–26 (2006).
  • Khalil OS. Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. Diabetes Technol. Ther.6, 660–697 (2004).
  • Heise HM, Lampen P, Marbach R. Near-infrared reflection spectroscopy for non-invasive monitoring of glucose – established and novel strategies for multivariate calibration. In: Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues. Tuchin VV (Ed.). Taylor & Francis Group LLC, CRC Press, FL, USA 115–156 (2009).
  • Liu R, Chen W, Gu X, Wang RK, Xu K. Chance correlation in non-invasive glucose measurement using near-infrared specroscopy. J. Phys. D. Appl. Phys.3815, 2675–2681 (2005).
  • Larin KV, Eledrisi MS, Motamedi M, Esenaliev RO. Noninvasive blood glucose monitoring with optical coherence tomography. Diabetes Care25, 2263–2267 (2002).
  • Esenaliev RO, Prough DS. Noninvasive monitoring of glucose concentration with optical coherence tomography. In: Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues. Tuchin VV (Ed.). Taylor & Francis Group LLC, CRC Press, 563–586 (2009).
  • Kinnunen M, Myllyla R, Vainio S. Detecting glucose-induced changes in in vivo and in vitro experiments with optical coherence tomography. J. Biomed. Opt.13(2), 021111 (2008).
  • MacKenzie HA, Ashton HS, Spiers S et al. Advances in photoacoustic noninvasive glucose testing. Clin. Chem.45, 1587–1595 (1999).
  • Enejder AMK, Scecina TG, Oh J et al. Raman spectroscopy for noninvasive glucose measurements. J. Biomed. Opt.10, 031114 (2005).
  • Chiang A-S, Liu Y-C, Chiu S-L, Hu S-H, Huang C-Y, Hsieh C-H. Three-dimensional mapping of brain neuropils in the cockroach Diploptera punctata.J. Comp. Neurol.440, 1–11 (2001).
  • Fu Y-Y, Lin C-W, Enikolopov G, Sibley E, Chiang A-S, Tang S-C. Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution. Gastroenterology137(2), 453–465 (2009).
  • Cicchi R, Pavone FS, Massi D, Sampson DD. Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents. Opt. Express13(7), 2337–2344 (2005).
  • Cicchi R, Sestini S, De Giorgi V, Massi D, Lotti T, Pavone FS. Nonlinear laser imaging of skin lesions. J. BioPhotonics1(1), 62–73 (2008).
  • Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, Mohler WA. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J.82, 493–508 (2002).
  • Muller M, Squier JA, Wilson T, Brakenhoff G. 3D microscopy of transparent objects using third-harmonic generation. J. Microsc.191, 266–272 (1998).
  • Plotnikov S, Juneja V, Isaacson AB, Mohler WA, Campagnola PJ. Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophysical J.90, 328–339 (2006).
  • LaComb R, Nadiarnykh O, Carey S, Campagnola PJ. Quantitative second harmonic generation imaging and modeling of the optical clearing mechanism in striated muscle and tendon. J. Biomed. Opt.13(2), 021109 (2008).
  • Yasui T, Tohno Y, Araki T. Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry. J. Biomed. Opt.9(2), 259–264 (2004).
  • de Boer JF, Milner TE, Nelson JS. Determination of the depth resolved Stokes parameters of light backscattered from turbid media using polarization sensitive optical coherence tomography. Opt. Lett.24, 300–302 (1999).
  • de Boer JF, Milner TE. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt.7(3), 359–371 (2002).
  • Nadiarnykh O, Campagnola PJ. Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing. Optics Express17(7), 5794–5806 (2009).
  • Dodt H-U, Leischner U, Schierloh A et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods4, 331–336 (2007).
  • Huisken J, Stainier DYR. Selective plane illumination microscopy techniques in developmental biology. Development136, 1963–1975 (2009).
  • Becker K, Jährling N, Kramer ER, Schnorrer F, Dodt H-U. Ultramicroscopy: 3D reconstruction of large microscopical specimens. J. Biophotonics1, 36–42 (2008).
  • Efimova OI, Anokhin KV. Increase of optical permeability of isolated adult mouse brain structures. Bull. Exp. Biol. Med.147(1), 4–7 (2009).
  • Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science305(13), 107–109 (2004).
  • Khan MH, Choi B, Chess S, Kelly KM, McCullough J, Nelson JS. Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics. Lasers Surg. Med.34, 83–85 (2004).
  • Larina IV, Carbajal EF, Tuchin VV, Dickinson ME, Larin KV. Enhanced OCT imaging of embryonic tissue with optical clearing. Laser Phys. Lett.5(6), 476–479 (2008).
  • Sharpe J. Optical projection tomography. Annu. Rev. Biomed. Eng.6, 17.1–17.20 (2004).
  • Sharpe J, Ahlgren U, Perry P et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science296, 541–545 (2002).
  • Alanentalo T, Asayesh A, Morrison H. Tomographic molecular imaging and 3D quantification within adult mouse organs. Nat. Methods4(1), 31–33 (2007).
  • Zhu D, Wang J, Zhi Z, Wen X, Luo Q. Imaging dermal blood flow through the intact rat skin with an optical clearing method. J. Biomed. Opt.15(2), 026008 (2010).
  • Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues. Tuchin VV (Ed.). Taylor & Francis Group LLC, CRC Press, USA (2009).
  • Hale G, Querry MR. Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt.12(3), 555–563 (1973).
  • Kohl M, Esseupreis M, Cope M. The influence of glucose concentration upon the transport of light in tissue-simulating phantoms. Phys. Med. Biol.40, 1267–1287 (1995).
  • Kinnunen M, Myllyla R. Application of optical coherence tomography, pulsed photoacoustic technique, and time-of-flight technique to detect changes in the scattering properties of a tissue-simulating phantom. J. Biomed. Opt.13(2), 024005 (2008).
  • Hanlon EB, Manoharan R, Koo TW et al. Prospects for in vivo raman spectroscopy. Phys. Med. Biol.45, R1–R59 (2000).
  • McNichols RJ, Coté GL. Optical glucose sensing in biological fluids: an overview. J. Biomed. Opt.5, 5–16 (2000).
  • Schulmerich MV, Cole JH, Dooley KA et al. Noninvasive raman tomographic imaging of canine bone tissue. J. Biomed. Opt.13(2), 020506 (2008).
  • Schulmerich MV, Cole JH, Dooley KA, Morris MD, Kreider JM, Goldstein SA. Optical clearing in transcutaneous raman spectroscopy of murine cortical bone tissue. J. Biomed. Opt.13(2), 021108 (2008).
  • Genina EA, Zubkova EA, Korobko AA et al. Diffusion of cortexin and retinalamin in eye sclera, Proc.SPIE6535, 65351Y (2007).
  • Genina EA, Bashkatov AN, Zubkova EA, Kamenskikh TG, Tuchin VV. Mesurements of retinalamin diffusion coefficient in human sclera by optical spectroscopy. Opt. Lasers Eng.46, 915–920 (2008).
  • Kuo P-Ch, Peyman GA, Men G, Bezerra Y, Torres F. The effect of indocyanine green pretreatment on the parameters of transscleral diode laser thermotherapy-induced threshold coagulation of the ciliary body. Lasers Surg. Med.35, 157–162 (2004).
  • Kang H, Son T, Yoon J, Kwon K, Nelson JS, Jung B. Evaluation of laser beam profile in soft tissue due to compression, glycerol, and micro-needling. Lasers Surg. Med.40, 570–575 (2008).
  • McNichols RJ, Fox MA, Gowda A, Tuya S, Bell B, Motamedi M. Temporary dermal scatter reduction: quantitative assessment and implications for improved laser tattoo removal. Lasers Surg. Med.36, 289–296 (2005).
  • Bashkatov AN, Genina EA, Tuchin VV, Altshuler GB. Skin optical clearing for improvement of laser tattoo removal. Laser Physics19(6), 1312–1322 (2009).
  • Genina EA, Bashkatov AN, Tuchin VV. Skin optical clearing by glycerol: ex vivo and in vivo research. Optics and Spectroscopy109(2), 1312–1319 (2010).
  • Vargas G, Readinger A, Dozier SS, Welch AJ. Morphological changes in blood vessels produced by hyperosmotic agents and measured by optical coherence tomography. Photochem. Photobiol.77(5), 541–549 (2003).
  • Barer R. Spectrophotometry of clarified cell suspensions. Science121, 709–715 (1955).
  • Tuchin VV, Wang RK, Yeh AT. Special section on optical clearing of tissues and cells. J. Biomed. Opt.13, 021101 (2008).
  • Tuchin VV. Optical clearing of tissue and blood using immersion method. J. Phys. D. Appl. Phys.38, 2497–2518 (2005).
  • Tuchin VV. Optical immersion as a new tool to control optical properties of tissues and blood. Laser Phys.15(8), 1109–1136 (2005).

Patent

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.