196
Views
22
CrossRef citations to date
0
Altmetric
Review

Synthetic, biological and composite scaffolds for abdominal wall reconstruction

, , , &
Pages 275-288 | Published online: 09 Jan 2014

References

  • Ray NF, Denton WG, Thamer M et al. Abdominal adhesiolysis: inpatient care and expenditures in the United States in 1994. J. Am. Coll. Surg.186(1), 1–9 (1998).
  • Klinge U, Si ZY, Zheng H et al. Abnormal collagen I to III distribution in the skin of patients with incisional hernia. Eur. Surg. Res.32(1), 43–48 (2000).
  • Klinge U, Zheng H, Si Z et al. Expression of the extracellular matrix proteins collagen I, collagen III and fibronectin and matrix metalloproteinase-1 and-13 in the skin of patients with inguinal hernia. Eur. Surg. Res.31(6), 480–490 (1999).
  • Zheng H, Si ZY, Kasperk R et al. Recurrent inguinal hernia: disease of the collagen matrix? World J. Surg.26(4), 401–408 (2002).
  • Bringman S, Conze J, Cuccurullo D et al. Hernia repair: the search for ideal meshes. Hernia14(1), 81–87 (2010).
  • Bellon JM, Rodriguez M, Garcia-Honduvilla N et al. Peritoneal effects of prosthetic meshes used to repair abdominal wall defects: monitoring adhesions by sequential laparoscopy. J. Laparoendosc. Adv. Surg. Tech.17(2), 160–166 (2007).
  • Earle DB, Mark LA. Prosthetic material in inguinal hernia repair: how do I choose? Surg. Clin. North Am.88(1), 179–201 (2008).
  • Hollinsky C, Sandberg S, Koch T et al. Biomechanical properties of lightweight versus heavyweight meshes for laparoscopic inguinal hernia repair and their impact on recurrence rates. Surg. Endosc.22(12), 2679 (2008).
  • Klinge U, Klosterhalfen B, Birkenhauer V et al. Impact of polymer pore size on the interface scar formation in a rat model. J. Surg. Res.103(2), 208–214 (2002).
  • Cobb WS, Kercher KW, Heniford BT. The argument for lightweight polypropylene mesh in hernia repair. Surg. Innov.12(1), 63–69 (2005).
  • Schumpelick V, Klinge U, Rosch R et al. Light weight meshes in incisional hernia repair. J. Minim. Access Surg.2(3), 117 (2006).
  • Engelsman AF, van der Mei HC, Busscher HJ et al. Morphological aspects of surgical meshes as a risk factor for bacterial colonization. Br. J. Surg.95(8), 1051–1059 (2008).
  • Usher FC, Ochsner J, Tuttle LL Jr. Use of marlex mesh in the repair of incisional hernias. Am. Surg.24(12), 969–974 (1958).
  • Halm JA, de Wall LL, Steyerberg EW et al. Intraperitoneal polypropylene mesh hernia repair complicates subsequent abdominal surgery. World J. Surg.31(2), 423–430 (2007).
  • Junge K, Binnebosel M, Rosch R et al. Adhesion formation of a polyvinylidenfluoride/polypropylene mesh for intra-abdominal placement in a rodent animal model. Surg. Endosc.23(2), 327–333 (2009).
  • Klosterhalfen B, Klinge U, Schumpelick V. Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wail repair. Biomaterials19(24), 2235–2246 (1998).
  • Schreinemacher MH, Emans PJ, Gijbels MJ et al. Degradation of mesh coatings and intraperitoneal adhesion formation in an experimental model. Br. J. Surg.96(3), 305–313 (2009).
  • Chou FF, Sheen-Chen SM, Chen YS et al. The repair of ventral hernia with Marlex mesh. Asian J. Surg.15(1), 24–27 (1992).
  • Bell RCW, Price JG. Laparoscopic inguinal hernia repair using an anatomically contoured three-dimensional mesh. Surg. Endosc.17(11), 1784–1788 (2003).
  • Cobb WS, Carbonell AM, Kalbaugh CL et al. Infection risk of open placement of intraperitoneal composite mesh. Am. Surg.75(9), 762–767 (2009).
  • Heniford BT. Laparoscopic repair of ventral hernias: nine years’ experience with 850 consecutive hernias. Ann. Surg.238(3), 391 (2003).
  • Himpens JM. Laparoscopic inguinal hernioplasty. Repair with a conventional vs a new self-expandable mesh. Surg. Endosc.7(4), 315–318 (1993).
  • Leber GE, Garb JL, Alexander AI et al. Long-term complications associated with prosthetic repair of incisional hernias. Arch. Surg.133(4), 378–382 (1998).
  • Kiudelis M, Jonciauskiene J, Deduchovas O et al. Effects of different kinds of meshes on postoperative adhesion formation in the New Zealand white rabbit. Hernia11(1), 19–23 (2007).
  • Chen CCG, Ridgeway B, Paraiso MFR. Biologic grafts and synthetic meshes in pelvic reconstructive surgery. Clin. Obstetr. Gynecol.50(2), 383–411 (2007).
  • Dayton MT, Buchele BA, Shirazi SS et al. Use of an absorbable mesh to repair contaminated abdominal-wall defects. Arch. Surg.121(8), 954–960 (1986).
  • Nagy KK, Perez F, Fildes JJ et al. Optimal prosthetic for acute replacement of the abdominal wall. J. Trauma47(3), 529–532 (1999).
  • Klinge U, Schumpelick V, Klosterhalfen B. Functional assessment and tissue response of short- and long-term absorbable surgical meshes. Biomaterials22(11), 1415–1424 (2001).
  • Abbott DE, Dumanian GA, Halverson AL. Management of laparotomy wound dehiscence. Am. Surg.73(12), 1224–1227 (2007).
  • Bee TK, Croce MA, Magnotti LJ et al. Temporary abdominal closure techniques: A prospective randomized trial comparing polyglactin 910 mesh and vacuum-assisted closure. J. Trauma65(2), 337–342 (2008).
  • Tobias AM, Low DW. The use of a subfascial Vicryl mesh buttress to aid in the closure of massive ventral hernias following damage-control laparotomy. Plast. Reconstr. Surg.112(3), 766–776 (2003).
  • van’t Riet M, van de Vos SPJ, Bonjer HJ et al. Mesh repair for postoperative wound dehiscence in the presence of infection: is absorbable mesh safer than non-absorbable mesh? Hernia11(5), 409–413 (2007).
  • Boukerrou M, Boulanger L, Rubod C et al. Study of the biomechanical properties of synthetic mesh implanted in vivo. Eur. J. Obstetr. Gynecol. Reprod. Biol.134(2), 262–267 (2007).
  • Reilingh TSD, van Goor H, Koppe MJ et al. Interposition of polyglactin mesh does not prevent adhesion formation between viscera and polypropylene mesh. J. Surg. Res.140(1), 27–30 (2007).
  • Ersoy E, Ozturk V, Yazgan A et al. Comparison of the two types of bioresorbable barriers to prevent intra-abdominal adhesions in rats. J. Gastrointest. Surg.13(2), 282–286 (2009).
  • Dasika UK, Does lining polypropylene with polyglactin mesh reduce intraperitoneal adhesions? Am. Surg.64(9), 817–819 (1998).
  • Urman B, Gomel V. Effect of hyaluronic acid on postoperative intraperitoneal adhesion formation and reformation in the rat model. Fertil. Steril.56(3), 568–570 (1991).
  • Alponat A, Lakshminarasappa SR, Teh M et al. Effects of physical barriers in prevention of adhesions: an incisional hernia model in rats. J. Surg. Res.68(2), 126 (1997).
  • Arnold PB, Green CW, Foresman PA et al. Evaluation of resorbable barriers for preventing surgical adhesions. Fertil. Steril.73(1), 157–161 (2000).
  • Chelala E, Thoma M, Tatete B et al. The suturing concept for laparoscopic mesh fixation in ventral and incisional hernia repair: mid-term analysis of 400 cases. Surg. Endosc.21(3), 391–395 (2007).
  • Butler CE, Prieto VG. Reduction of adhesions with composite AlloDerm/polypropylene mesh implants for abdominal wall reconstruction. Plast. Reconstr. Surg.114(2), 464–473 (2004).
  • Vanderrest M, Garrone R. Collagen family of proteins. FASEB J.5(13), 2814–2823 (1991).
  • Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transplant Immun.12(3–4), 367–377 (2004).
  • Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. J. Surg. Res.152(1), 135–139 (2009).
  • Zheng MH, Chen J, Kirilak Y et al. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J. Biomed. Mater. Res. Part B Appl. Biomater.73(1), 61–67 (2005).
  • Jorge-Herrero E, Fernández P, Turnay J et al. Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen. Biomaterials20(6), 539–545 (1999).
  • Petite H, Rault I, Huc A et al. Use of the acyl azide method for cross-linking collagen-rich tissues such as pericardium. J. Biomed. Mater. Res.24(2), 179–187 (1990).
  • Damink L, Dijkstra PJ, vanLuyn MJA et al. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials17(8), 765–773 (1996).
  • Damink L, Dijkstra PJ, Vanluyn MJA et al. Cross-linking of dermal sheep collagen using hexamethylene diisocyanate. J. Mater. Sci.6(7), 429–434 (1995).
  • Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials24(5), 759–767 (2003).
  • Abraham GA, Murray J, Billiar K, Sullivan SJ. Evaluation of the porcine intestinal collagen layer as a biomaterial. J. Biomed. Mater. Res.51(3), 442–452 (2000).
  • Courtman DW, Errett BF, Wilson GJ. The role of crosslinking in modification of the immune response elicited against xenogenic vascular acellular matrices. J. Biomed. Mater. Res.55(4), 576–586 (2001).
  • Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng.8(2), 295–308 (2002).
  • Franklin ME, Gonzalez JJ, Michaelson RP et al. Preliminary experience with new bioactive prosthetic material for repair of hernias in infected fields. Hernia6(4), 171–174 (2002).
  • Franklin ME, Trevino JM, Portillo G et al. The use of porcine small intestinal submucosa as a prosthetic material for laparoscopic hernia repair in infected and potentially contaminated fields: long-term follow-up. Surg. Endosc.22(9), 1941–1946 (2008).
  • Candage R, Jones K, Luchette FA et al. Use of human acellular dermal matrix for hernia repair: friend or foe? Surgery144(4), 703–711 (2008).
  • Diaz JJ, Conquest AM, Ferzoco SJ et al. Multi-institutional experience using human acellular dermal matrix for ventral hernia repair in a compromised surgical field. Arch. Surg.144(3), 209–215 (2009).
  • Hammond TM, Huang A, Frye JN et al. Parastomal hernia prevention using a novel collagen implant: a randomised controlled Phase 1 study. Hernia12(5), 475–481 (2008).
  • Catena F, Ansaloni L, Gazzotti F et al. Use of porcine dermal collagen graft (Permacol) for hernia repair in contaminated fields. Hernia11(1), 57–60 (2007).
  • Gaertner WB, Bonsack ME, Delaney JP. Experimental evaluation of four biologic prostheses for ventral hernia repair. J. Gastrointest. Surg.11(10), 1275–1285 (2007).
  • Gilbert TW, Stewart-Akers AM, Simmons-Byrd A et al. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J. Bone Joint Surg. Am.89A(3), 621 (2007).
  • Record RD, Hillegonds D, Simmons C et al.In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials22(19), 2653–2659 (2002).
  • Greene MA, Mullins RJ, Malangoni MA et al. Laparotomy wound closure with absorbable polyglycolic acid mesh. Surg. Gynecol. Obstetr.176(3), 213–218 (1993).
  • Sauerland S, Schmedt CG, Lein S et al. Primary incisional hernia repair with or without polypropylene mesh: a report on 384 patients with 5-year follow-up. Langenbeck Arch. Surg.390(5), 408–412 (2005).
  • Liakakos T, Karanikas I, Panagiotidis H, Dendrinos S. Use of Marlex mesh in the repair of recurrent incisional hernia. Br. J. Surg.81(2), 248–249 (1994).
  • Patt HH. Marlex mesh grafts inguinal hernia repair. Arch. Surg.94(5), 734–736 (1967).
  • Berger D, Bientzle M, Muller A. Postoperative complications after laparoscopic incisional hernia repair – incidence and treatment. Surg. Endosc.16(12), 1720–1723 (2002).
  • Gananadha S, Samra JS, Smith GS et al. Laparoscopic ePTFE mesh repair of incisional and ventral hernias. ANZ J. Surg.78(10), 907–913 (2008).
  • Lau H, Patil NG, Yuen WK. Outcomes of laparoscopic incisional hernia repair: a prospective evaluation. Surg. Pract.9(1), 13–17 (2005).
  • Topart P, Ferrand L, Vandenbroucke F et al. Laparoscopic ventral hernia repair with the Goretex DUALMESH: long-term results and review of the literature. Hernia9(4), 348–352 (2005).
  • Ballas KD, Rafailidis SF, Marakis GN et al. Intraperitoneal ePTFE mesh repair of parastomal hernias. Hernia10(4), 350–353 (2006).
  • Cerise EJ, Busuttil RW, Craighead CC et al. The use of Mersilene mesh in repair of abdominal wall hernias: a clinical and experimental study. Ann. Surg.181(5), 728–734 (1975).
  • Machairas A, Misiakos EP, Liakakos T et al. Incisional hernioplasty with extraperitoneal onlay polyester mesh. Am. Surg.70(8), 726–729 (2004).
  • Ramshaw B, Abiad F, Voeller G et al. Polyester (Parietex) mesh for total extraperitoneal laparoscopic inguinal hernia repair: Initial experience in the United States. Surg. Endosc.17(3), 498–501 (2003).
  • Rosenberg J, Burcharth J. Feasibility and outcome after laparoscopic ventral hernia repair using Proceed mesh. Hernia12(5), 453–456 (2008).
  • Koch A, Bringman S, Myrelid P et al. Randomized clinical trial of groin hernia repair with titanium-coated lightweight mesh compared with standard polypropylene mesh. Br. J. Surg.95, 1226–1231 (2008).
  • Rosch R, Junge K, Quester R et al. Vypro II mesh in hernia repair: impact of polyglactin on long-term incorporation in rats. Eur. Surg. Res.35(5), 445–450 (2003).
  • Olmi S, Erba L, Magnone S et al. Prospective clinical study of laparoscopic treatment of incisional and ventral hernia using a composite mesh: Indications, complications and results. Hernia10(3), 243–247 (2006).
  • Ammaturo C, Bassi G. Surgical treatment of large incisional hernias with an intraperitoneal Parietex Composite mesh: our preliminary experience on 26 cases. Hernia8(3), 242–246 (2004).
  • Moreno-Egea A, Liron R, Girela E et al. Laparoscopic repair of ventral and incisional hernias using a new composite mesh (Parietex) – initial experience. Surg. Laparosc. Endosc.11(2), 103–106 (2001).
  • Gillian GK, Geis WP, Grover G. Laparoscopic incisional and ventral hernia repair (LIVH): an evolving outpatient technique. JSLS6(4), 315–322 (2002).
  • Cobb WS, Harris JB, Lokey JS et al. Incisional herniorrhaphy with intraperitoneal composite mesh: a report of 95 cases. Am. Surg.69(9), 784–787 (2003).
  • Hadi HIA, Maw A, Sarmah S et al. Intraperitoneal tension-free repair of small midline ventral abdominal wall hernias with a Ventralex hernia patch: initial experience in 51 patients. Hernia10(5), 409–413 (2006).
  • Martin DF, Williams RF, Mulrooney T et al. Ventralex mesh in umbilical/epigastric hernia repairs: clinical outcomes and complications. Hernia12(4), 379–383 (2008).
  • Verbo A, Petito L, Manno A et al. Laparoscopic approach to recurrent incisional hernia repair: a 3-year experience. J. Laparoendosc. Adv. Surg. Tech.17(5), 591–595 (2007).
  • Catani M, De M, Pietroletti R et al. Is there a place for intraperitoneal onlay mesh repair (IPOM) of inguinal hernia among laparoscopic techniques? Hepato-gastroenterology51(59), 1387–1392 (2004).
  • Lo Monte AI, Damiano G, Maione C et al. Use of intraperitoneal ePTFE GORE DUAL-MESH PLUS in a giant incisional hernia after kidney transplantation: a case report. Transplant. Proc.41(4), 1398–1401 (2009).
  • Catena F, Ansaloni L, Leone A et al. Lichtenstein repair of inguinal hernia with Surgisis inguinal hernia matrix soft-tissue graft in immunodepressed patients. Hernia9(1), 29–31 (2005).
  • Ansaloni L, Catena F, D’Alessandro L. Prospective randomized, double-blind, controlled trial comparing Lichtenstein’s repair of inguinal hernia with polypropylene mesh versus Surgisis gold soft tissue graft: preliminary results. Acta Bio-Medica74(Suppl. 2), 10–14 (2003).
  • Ueno T, Pickett LC, de la Fuente SG et al. Clinical application of porcine small intestinal submucosa in the management of infected or potentially contaminated abdominal defects. J. Gastrointest. Surg.8(1), 109–112 (2004).
  • Hammond TM, Chin-Aleong J, Navsaria H et al. Human in vivo cellular response to a cross-linked acellular collagen implant. Br. J. Surg.95(4), 438–446 (2008).
  • Parker DM, Armstrong PJ, Frizzi JD et al. Porcine dermal collagen (Permacol) for abdominal wall reconstruction. Curr. Surg.63(4), 255–258 (2006).
  • Liyanage SH, Purohit GS, Frye JNR et al. Anterior abdominal wall reconstruction with a Permacol implant. J. Plast. Reconstr. Aesthet. Surg.59(5), 553–555 (2006).
  • Smart N, Immanuel A, Mercer-Jones M. Laparoscopic repair of a Littre’s hernia with porcine dermal collagen implant (Permacol). Hernia11(4), 373–376 (2007).
  • Jin J, Rosen MJ, Blatnik J et al. Use of acellular dermal matrix for complicated ventral hernia repair: does technique affect outcomes? J. Am. Coll. Surg.205(5), 654–660 (2007).
  • Diaz JJ Jr, Guy J, Berkes MB et al. Acellular dermal allograft for ventral hernia repair in the compromised surgical field. Am. Surg.72(12), 1181–1187 (2006).
  • Buinewicz B, Rosen B. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann. Plast. Surg.52(2), 188–194 (2004).
  • Kolker AR, Brown DJ, Redstone JS et al. Multilayer reconstruction of abdominal wall defects with acellular dermal allograft (AlloDerm) and component separation. Ann. Plast. Surg.55(1), 36–42 (2005).
  • Butler CE, Langstein HN, Kronowitz SJ. Pelvic, abdominal, and chest wall reconstruction with AlloDerm in patients at increased risk for mesh-related complications. Plast. Reconstr. Surg.116(5), 1263–1275 (2005).
  • Scott BG, Welsh FJ, Pham HQ et al. Early aggressive closure of the open abdomen. J. Trauma60(1), 17–22 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.