89
Views
9
CrossRef citations to date
0
Altmetric
Review

The use of stem cells for the repair of cardiac tissue in ischemic heart disease

&
Pages 209-225 | Published online: 09 Jan 2014

References

  • Tendera M. How much does Europe invest in the treatment of cardiovascular diseases? Eur. Heart J.27(13), 1521–1522 (2006).
  • Conley BJ, Young JC, Trounson AO, Mollard R. Derivation, propagation and differentiation of human embryonic stem cells. Int. J. Biochem. Cell Biol.36(4), 555–567 (2004).
  • Mummery C, Ward D, van den Brink CE et al. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J. Anat.200(Pt 3), 233–242 (2002).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5), 861–872 (2007).
  • Guan K, Nayernia K, Maier LS et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature440(7088), 1199–1203 (2006).
  • Shao H, Wei Z, Wang L et al. Generation and characterization of mouse parthenogenetic embryonic stem cells containing genomes from non-growing and fully grown oocytes. Cell Biol. Int.31(11), 1336–1344 (2007).
  • Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature458(7239), 771–775 (2009).
  • Srivastava D, Ivey KN. Potential of stem-cell-based therapies for heart disease. Nature441(7097), 1097–1099 (2006).
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676 (2006)
  • Kitajima S, Takagi A, Inoue T, Saga Y. MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development127(15), 3215–3226 (2000).
  • Saga Y, Kitajima S, Miyagawa-Tomita S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc. Med.10(8), 345–352 (2000).
  • David R, Brenner C, Stieber J et al. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat. Cell Biol.10(3), 338–345 (2008).
  • David R, Stieber J, Fischer E et al. Forward programming of pluripotent stem cells towards distinct cardiovascular cell types. Cardiovasc. Res.84(2), 263–272 (2009).
  • David R, Theiss H, Franz WM. Connexin 40 promoter-based enrichment of embryonic stem cell-derived cardiovascular progenitor cells. Cells Tissues Organs188(1–2), 62–69 (2008).
  • Müller M, Fleischmann BK, Selbert S et al. Selection of ventricular-like cardiomyocytes from ES cells in vitro.FASEB J.14(15), 2540–2548. (2000).
  • Zweigerdt R, Burg M, Willbold E, Abts H, Ruediger M. Generation of confluent cardiomyocyte monolayers derived from embryonic stem cells in suspension: a cell source for new therapies and screening strategies. Cytotherapy5(5), 399–413 (2003).
  • Xu XQ, Graichen R, Soo SY et al. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation76(9), 958–970 (2008).
  • Lee MS, Makkar RR. Stem-cell transplantation in myocardial infarction: a status report. Ann. Intern. Med.140(9), 729–737 (2004).
  • Cooke MJ, Stojkovic M, Przyborski SA. Growth of teratomas derived from human pluripotent stem cells is influenced by the graft site. Stem Cells Dev.15(2), 254–259 (2006).
  • Xue T, Cho HC, Akar FG et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation111(1), 11–20 (2005).
  • Grepin C, Nemer G, Nemer M. Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development124(12), 2387–2395 (1997).
  • Singh AM, Li FQ, Hamazaki T, Kasahara H, Takemaru KI, Terada N. Chibby, an antagonist of the Wnt/β-catenin pathway, facilitates cardiomyocyte differentiation of murine embryonic stem cells. Circulation115(5), 617–626 (2007).
  • David R, Groebner M, Franz WM. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker. Stem Cells23(4), 477–482 (2005).
  • Gassanov N, Er F, Zagidullin N, Hoppe UC. Endothelin induces differentiation of ANP–EGFP expressing embryonic stem cells towards a pacemaker phenotype. FASEB J.18(14), 1710–1712 (2004).
  • Zandstra PW, Bauwens C, Yin T et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng.9(4), 767–778 (2003).
  • Okita K, Yamanaka S. Induction of pluripotency by defined factors. Exp. Cell Res.316(16), 2565–2570 (2010).
  • Zimmermann WH, Schneiderbanger K, Schubert P et al. Tissue engineering of a differentiated cardiac muscle construct. Circ. Res.90(2), 223–230 (2002).
  • Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G. Cardiac tissue engineering using perfusion bioreactor systems. Nat. Protoc.3(4), 719–738 (2008).
  • Zhao YS, Wang CY, Li DX et al. Construction of a unidirectionally beating 3-dimensional cardiac muscle construct. J. Heart Lung Transplant.24(8), 1091–1097 (2005).
  • Tuzlakoglu K, Reis RL. Biodegradable polymeric fiber structures in tissue engineering. Tissue Eng. Part B Rev.15(1), 17–27 (2009).
  • Zakharova L, Mastroeni D, Mutlu N et al. Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc. Res.87(1), 40–49 (2010).
  • Wu KH, Mo XM, Liu YL. Cell sheet engineering for the injured heart. Med. Hypotheses71(5), 700–702 (2008).
  • Zimmermann WH, Melnychenko I, Wasmeier G et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med.12(4), 452–458 (2006).
  • Masuda S, Shimizu T, Yamato M, Okano T. Cell sheet engineering for heart tissue repair. Adv. Drug Deliv. Rev.60(2), 277–285 (2008).
  • Ott HC, Matthiesen TS, Goh SK et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med.14(2), 213–221 (2008).
  • Deindl E, Zaruba MM, Brunner S et al. G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis. FASEB J.20(7), 956–958 (2006).
  • Ince H, Petzsch M, Kleine HD et al. Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) trial. Circulation112(9 Suppl.), I73–80 (2005).
  • Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann. NY Acad. Sci.938, 221–229 (2001).
  • Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature410(6829), 701–705 (2001).
  • Schächinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1210–1221 (2006).
  • Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364(9429), 141–148 (2004).
  • Murry CE, Soonpaa MH, Reinecke H et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature428(6983), 664–668 (2004).
  • Nygren JM, Jovinge S, Breitbach M et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med.10(5), 494–501 (2004).
  • Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature428(6983), 668–673 (2004).
  • Zaruba MM, Huber BC, Brunner S et al. Parathyroid hormone treatment after myocardial infarction promotes cardiac repair by enhanced neovascularization and cell survival. Cardiovasc. Res.77(4), 722–731 (2008).
  • Zaruba MM, Theiss HD, Vallaster M et al. Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell4(4), 313–323 (2009).
  • Henning RJ, Aufman J, Shariff M et al. Human umbilical cord blood mononuclear cells decrease fibrosis and increase cardiac function in cardiomyopathy. Regen. Med.5(1), 45–54 (2010).
  • Sodian R, Schaefermeier P, Abegg-Zips S et al. Use of human umbilical cord blood-derived progenitor cells for tissue-engineered heart valves. Ann. Thorac. Surg.89(3), 819–828 (2010).
  • Ince H, Petzsch M, Rehders TC, Chatterjee T, Nienaber CA. Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J. Endovasc. Ther.11(6), 695–704 (2004).
  • Smits PC, van Geuns RJ, Poldermans D et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol.42(12), 2063–2069 (2003).
  • Siminiak T, Fiszer D, Jerzykowska O et al. Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur. Heart J.26(12), 1188–1195 (2005).
  • Herreros J, Prosper F, Perez A et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur. Heart J.24(22), 2012–2020 (2003).
  • Menasche P, Hagege AA, Vilquin JT et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol.41(7), 1078–1083 (2003).
  • Siminiak T, Kalawski R, Fiszer D et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: Phase I clinical study with 12 months of follow-up. Am. Heart J.148(3), 531–537 (2004).
  • Menasche P, Alfieri O, Janssens S et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation117(9), 1189–1200 (2008).
  • Pagani FD, DerSimonian H, Zawadzka A et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J. Am. Coll. Cardiol.41(5), 879–888 (2003).
  • Formigli L, Zecchi-Orlandini S, Meacci E, Bani D. Skeletal myoblasts for heart regeneration and repair: state of the art and perspectives on the mechanisms for functional cardiac benefits. Curr. Pharm. Des.16(8), 915–928 (2010).
  • Chamuleau SA, Vrijsen KR, Rokosh DG, Tang XL, Piek JJ, Bolli R. Cell therapy for ischaemic heart disease: focus on the role of resident cardiac stem cells. Neth. Heart J.17(5), 199–207 (2009).
  • Johnston PV, Sasano T, Mills K et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation120(12), 1075–1083 (2009).
  • Smith RR, Barile L, Cho HC et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation115(7), 896–908 (2007).
  • Davis DR, Zhang Y, Smith RR et al. Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS One4(9), e7195 (2009).
  • Chimenti I, Smith RR, Li TS et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ. Res.106(5), 971–980 (2010).
  • Tang XL, Rokosh G, Sanganalmath SK et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation121(2), 293–305 (2010).
  • Meyer GP, Wollert KC, Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur. Heart J.30(24), 2978–2984 (2009).
  • Meyer GP, Wollert KC, Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone Marrow Transfer to Enhance ST-elevation Infarct Regeneration) trial. Circulation113(10), 1287–1294 (2006).
  • Dill T, Schächinger V, Rolf A et al. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells and Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am. Heart J.157(3), 541–547 (2009).
  • Chen SL, Fang WW, Ye F et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol.94(1), 92–95 (2004).
  • Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur. Heart J.28(6), 766–772 (2007).
  • Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur. Heart J.29(15), 1807–1818 (2008).
  • Thomas J, Liu F, Link DC. Mechanisms of mobilization of hematopoietic progenitors with granulocyte colony-stimulating factor. Curr. Opin. Hematol.9(3), 183–189 (2002).
  • Engelmann MG, Theiss HD, Hennig-Theiss C et al. Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. J. Am. Coll. Cardiol.48(8), 1712–1721 (2006).
  • Ripa RS, Jorgensen E, Wang Y et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled Stem Cells in Myocardial Infarction (STEMMI) trial. Circulation113(16), 1983–1992 (2006).
  • Zohlnhofer D, Ott I, Mehilli J et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA295(9), 1003–1010 (2006).
  • Zohlnhofer D, Dibra A, Koppara T et al. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J. Am. Coll. Cardiol.51(15), 1429–1437 (2008).
  • Kim HK, De La Luz Sierra M, Williams CK, Gulino AV, Tosato G. G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood108(3), 812–820 (2006).
  • Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J. Clin. Invest.111(2), 187–196 (2003).
  • Petit I, Szyper-Kravitz M, Nagler A et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol.3(7), 687–694 (2002).
  • Stein A, Zohlnhofer D, Pogatsa-Murray G et al. Expression of CXCR4, VLA-1, LFA-3 and transducer of ERB in G-CSF-mobilised progenitor cells in acute myocardial infarction. Thromb. Haemost.103(3), 638–643 (2010).
  • Brunner S, Winogradow J, Huber BC et al. Erythropoietin administration after myocardial infarction in mice attenuates ischemic cardiomyopathy associated with enhanced homing of bone marrow-derived progenitor cells via the CXCR-4/SDF-1 axis. FASEB J.23(2), 351–361 (2009).
  • Theiss HD, Brenner C, Engelmann MG et al. Safety and efficacy of Sitagliptin plus Granulocyte-Colony-Stimulating Factor in Patients Suffering from Acute Myocardial Infarction (SITAGRAMI-trial) – rationale, design and first interim analysis. Int. J. Cardiol.145(2), 282–284 (2010).
  • Korf-Klingebiel M, Kempf T, Sauer T et al. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur. Heart J.29(23), 2851–2858 (2008).
  • Fazel S, Cimini M, Chen L et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J. Clin. Invest.116(7), 1865–1877 (2006).
  • Saxena A, Fish JE, White MD et al. Stromal cell-derived factor-1α is cardioprotective after myocardial infarction. Circulation117(17), 2224–2231 (2008).
  • Srivastava D, Saxena A, Michael Dimaio J, Bock-Marquette I. Thymosin β4 is cardioprotective after myocardial infarction. Ann. NY Acad. Sci.1112, 161–170 (2007).
  • Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc. Natl Acad. Sci. USA106(29), 12103–12108 (2009).
  • Liu N, Bezprozvannaya S, Williams AH et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev.22(23), 3242–3254 (2008).
  • Thum T, Gross C, Fiedler J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature456(7224), 980–984 (2008).
  • van Rooij E, Sutherland LB, Liu N et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA103(48), 18255–18260 (2006).
  • Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell11(5), 723–732 (2006).
  • Van Hoof D, Dormeyer W, Braam SR et al. Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. J. Proteome Res.9(3), 1610–1618 (2010).
  • Wobus AM, Kaomei G, Shan J et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell Cardiol.29(6), 1525–1539. (1997).
  • Paquin J, Danalache BA, Jankowski M, McCann SM, Gutkowska J. Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc. Natl Acad. Sci. USA99(14), 9550–9555 (2002).
  • Takahashi T, Lord B, Schulze PC et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation107(14), 1912–1916 (2003).
  • Ventura C, Maioli M, Asara Y et al. Butyric and retinoic mixed ester of hyaluronan. A novel differentiating glycoconjugate affording a high throughput of cardiogenesis in embryonic stem cells. J. Biol. Chem.279(22), 23574–23579 (2004).
  • Ventura C, Maioli M, Asara Y et al. Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J.19(1), 155–157 (2005).
  • Yuasa S, Itabashi Y, Koshimizu U et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat. Biotechnol.23(5), 607–611 (2005).
  • Roggia C, Ukena C, Bohm M, Kilter H. Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase. Exp. Cell Res.313(5), 921–930 (2006).
  • Mummery CL, Ward D, Passier R. Differentiation of human embryonic stem cells to cardiomyocytes by coculture with endoderm in serum-free medium. Curr. Protoc. Stem. Cell Biol. Chapter 1, Unit 1F.2 (2007).
  • Graichen R, Xu X, Braam SR et al. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation76(4), 357–370 (2008).
  • Yang L, Soonpaa MH, Adler ED et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature453(7194), 524–528 (2008).
  • Janssens S, Dubois C, Bogaert J et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet367(9505), 113–121 (2006).
  • Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1199–1209 (2006).
  • Tendera M, Wojakowski W, Ruzyllo W et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) trial. Eur. Heart J.30(11), 1313–1321 (2009).
  • Gyongyosi M, Lang I, Dettke M et al. Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nat. Clin. Pract. Cardiovasc. Med.6(1), 70–81 (2009).
  • Surder D, Schwitter J, Moccetti T et al. Cell-based therapy for myocardial repair in patients with acute myocardial infarction: rationale and study design of the Swiss Multicenter Intracoronary Stem Cells Study in Acute Myocardial Infarction (SWISS-AMI). Am. Heart J.160(1), 58–64 (2010).
  • Zhao Y, Ransom JF, Li A et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell129(2), 303–317 (2007).
  • Maurer B, Stanczyk J, Jungel A et al. miR-29 is a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum.62(6), 1733–1743 (2010).
  • van Rooij E, Sutherland LB, Thatcher JE et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA105(35), 13027–13032 (2008).
  • Wang S, Aurora AB, Johnson BA et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell15(2), 261–271 (2008).
  • Wang S, Olson EN. AngiomiRs – key regulators of angiogenesis. Curr. Opin. Genet. Dev.19(3), 205–211 (2009).
  • Li Q, Lin X, Yang X, Chang J. NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am. J. Physiol. Heart Circ. Physiol.298(5), H1340–H1347 (2010).
  • Gonsalves CS, Kalra VK. Hypoxia-mediated expression of 5-lipoxygenase-activating protein involves HIF-1α and NF-κB and microRNAs 135a and 199a-5p. J. Immunol.184(7), 3878–3888 (2010).
  • Rane S, He M, Sayed D et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res.104(7), 879–886 (2009).
  • Callis TE, Pandya K, Seok HY et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest.119(9), 2772–2786 (2009).
  • van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science316(5824), 575–579 (2007).
  • Ren XP, Wu J, Wang X et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation119(17), 2357–2366 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.