6,447
Views
23
CrossRef citations to date
0
Altmetric
Editorial

Sulfonamides and trimethoprim

Pages 1-6 | Published online: 10 Jan 2014

References

  • Sköld O. Sulfonamides and trimethoprim. In: Antimicrobial Drug Resistance. Mayers DL (Ed.). Humana Press, NY, USA, 257–267 (2009).
  • Domagk G, Hegler C. Chemoterapie bakterieller Infektionen, 2nd Edition Band I. In: Beiträge zur Arzneimitteltherapie. Lendle R, Schoen R (Eds). Verlag von S Hirzel, Leipzig, Germany (1942).
  • Domagk G. Chemotherapie der bakteriellen Infektionen. Dtsch. Med. Wschr.7, 250–253 (1935).
  • Wiholm BE, Emanuelsson S. Drug-related blood dyscrasias in a Swedish reporting system, 1985–1994. Eur. J. Haematol.57(Suppl. 60), 42–46 (1996).
  • Keisu M, Wiholm BE, Palmblad J. Trimethoprim–sulfamethoxazole-associated blood dyscrasias. Ten years experience of the Swedish spontaneous reporting system. J. Int. Med.228, 353–360 (1990).
  • Swedberg G, Fermér C, Sköld O. Point mutations in the dihydropteroate synthase gene causing sulfonamide resistance. Adv. Exp. Med. Biol.338, 555–558 (1993).
  • Gibreel A, Sköld O. Sulfonamide resistance in clinical isolates of Campylobacter jejuni: mutational changes in the chromosomal dihydropteroate synthase. Antimicrob. Agents Chemother.43, 2156–2160 (1999).
  • Maskell JP, Sefton AM, Hall LMC. Mechanisms of sulfonamide resistance in clinical isolates of Streptococcus pneumoniae.Antimicrob. Agents Chemother.41, 2121–2126 (1997).
  • Damrosch DS. Chemoprophylaxis and sulfonamide resistant streptococci. JAMA130, 124–128 (1946).
  • Swedberg G, Ringertz S, Sköld O. Sulfonamide resistance in Streptococcus pyogenes is associated with differences in the amino acid sequence of its chromosomal dihydropteroate synthase. Antimicrob. Agents Chemother.42, 1062–1069 (1998).
  • Jönsson M, Ström K, Swedberg G. Mutations and horizontal transmission have contributed to sulfonamide resistance in Streptococcus pyogenes.Microb. Drug Resist.9, 147–153 (2003).
  • Radström P, Fermér C, Kristiansen BE, Jenkins A, Sköld O, Swedberg G. Transformational exchanges in the dihydropteroate synthase gene of Neisseria meningitidis: a novel mechanism for acquisition of sulfonamide resistance. J. Bacteriol.174, 6386–6393 (1992).
  • Kristiansen BE, Radström P, Jenkins A, Ask E, Facinelli B, Sköld O. Cloning and characterization of a DNA fragment that confers sulfonamide resistance in a serogroup B, serotype 15 strain of Neisseria meningitidis.Antimicrob. Agents Chemother.34, 2277–2279 (1990).
  • Fermér C, Kristiansen BE, Sköld O, Swedberg G. Sulfonamide resistance in Neisseria meningitidis as defined by site-directed mutagenesis could have its origin in other species. J. Bacteriol.177, 4669–4675 (1995).
  • Fermér C, Swedberg G. Adaptation to sulfonamide resistance in Neisseria meningitidis may have required compensatory changes to retain enzyme function: kinetic analysis of dihydropteroate synthases from Neisseria meningitidis expressed in a knock-out mutant of Escherichia coli.J. Bacteriol.179, 831–837 (1997).
  • Sköld O. R-factor-mediated resistance to sulfonamides by a plasmid-borne, drug-resistant dihydropteroate synthase. Antimicrob. Agents Chemother.9, 4954 (1976).
  • Swedberg G, Sköld O. Plasmid-borne sulfonamide resistance determinants studied by restriction enzyme analysis. J. Bacteriol.153, 1228–1237 (1983).
  • Radström P, Swedberg G. RSF1010 and a conjugative plasmid contain sul2, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. Antimicrob. Agents Chemother.32, 1684–1692 (1988).
  • Perreten V, Boerlin P. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob. Agents Chemother.47, 1169–1172 (2003).
  • Huovinen P, Sundström L, Swedberg G, Sköld O. Trimethoprim and sulfonamide resistance. Antimicrob. Agents Chemother.39, 279–289 (1995).
  • Matthews DA, Bolin JT, Burridge JM, Filman DJ, Volz KW, Kraut J. Dihydrofolate reductase. The stereochemistry of inhibitor selectivity. J. Biol. Chem.260, 392–399 (1985).
  • Myllykallio H, Leduc D, Filee J, Liebl U. Life without dihydrofolate reductase folA. Trends Microbiol.11, 220–223 (2003).
  • Flensburg J, Sköld O. Massive overproduction of dihydrofolate reductase as a response to the use of trimethoprim. Eur. J. Biochem.162, 473–476 (1987).
  • Adrian PV, Klugman KP. Mutations in the dihydrofolate reductase gene of trimethoprim-resistant isolates of Streptococcus pneumoniae.Antimicrob. Agents Chemother.41, 2406–2413 (1997).
  • Sköld O, Widh A. A new dihydrofolate reductase with low trimethoprim sensitivity induced by an R-factor mediating high resistance to trimethoprim. J. Biol. Chem.249, 4324–4325 (1974).
  • Grape M, Sundström L, Kronvall G. New dfr2 as a single gene cassette in a class 1 integron from a trimethoprim-resistant Escherichia coli isolate. Microb. Drug Resistance.9, 317–322 (2003).
  • Sundström L, Jansson C, Bremer K, Heikkilä E, Olsson Liljequist B, Sköld O. A new dhfrVIII trimethoprim resistance gene flanked by IS26, whose product is remote from other dihydrofolate reductases in parsimony analysis. Gene154, 7–14 (1995).
  • Rouch DA, Messerotti LJ, Loo LSL, Jackson CA, Skurray RA. Trimethoprim resistance transposon Tn4003 from Stafylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257.Mol. Microbiol.3, 161–175 (1989).
  • Burdeska A, Ott M, Bannwarth W, Then R. Identical genes for trimethoprim-resistant dihydrofolate reductase from Staphylococcus aureus in Australia and central Europe. FEBS Lett.266, 159–162 (1990).
  • Dale GE, Broger C, Hartman PG et al. Characterization of the gene for the chromosomal dihydrofolate reductase (DHFR) of Staphylococcus epidermidis ATCC14990: the origin of the trimethoprim-resistant S1 DHFR from Staphylococcus aureus? J. Bacteriol.177, 2965–2970 (1995).
  • Jansson C, Sköld O. Appearance of a new trimethoprim resistance gene dhfrIX, in Escherichia coli from swine. Antimicrob. Agents Chemother.35, 1891–1899 (1991).
  • Jansson C, Franklin A, Sköld O. Spread of a new trimethoprim resistance gene dhfrIX, among porcine isolates and human pathogens. Antimicrob. Agents Chemother.36, 2704–2708 (1992).
  • Marshall B, Petrowski D, Levy SB. Inter and intraspecies spread of Escherichia coli in a farm environment in the absence of antibiotic usage. Proc. Natl Acad. Sci. USA87, 6609–6613 (1990).
  • Chiou CS, Jones AL. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other Gram-negative bacteria. J. Bacteriol.175, 732–740 (1993).
  • McManus PS. Antibiotic use in plant disease control. In: APUA (Alliance for the Prudent Use of Antibiotics) Newsletter. MA, USA, 17(1), 1–3 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.