119
Views
20
CrossRef citations to date
0
Altmetric
Review

New drugs and regimens for treatment of TB

&
Pages 801-813 | Published online: 10 Jan 2014

References

  • Hershkovitz I, Donoghue HD, Minnikin DE et al. Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS One3(10), e3426 (2008).
  • Zink A, Haas CJ, Reischl U, Szeimies U, Nerlich AG. Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J. Med. Microbiol.50(4), 355–366 (2001).
  • Formicola V, Milanesi Q, Scarsini C. Evidence of spinal tuberculosis at the beginning of the Fourth Millennium BC from Arene Candide cave (Liguria, Italy). Am. J. Phys. Anthropol.72(1), 1–6 (1987).
  • Bates JH, Stead WW. The history of tuberculosis as a global epidemic. Med. Clin. North Am.77(6), 1205–1217 (1993).
  • Bunyan J, Forrest JF, Sharrock R. The Life and Death of Mr. Badman: Presented to the World in a Familiar Dialogue Between Mr. Wiseman and Mr. Attentive. Oxford University Press, Oxford, UK (1988).
  • Grigg ER. The arcana of tuberculosis with a brief epidemiologic history of the disease in the U.S.A. IV. Am. Rev. Tuberc.78(4), 583–603 (1958).
  • Hinshaw HC, Feldman WH, Pfuetze KH. Streptomycin in treatment of clinical tuberculosis. Am. Rev. Tuberc.54(3), 191–203 (1946).
  • Mitchison DA. The diagnosis and therapy of tuberculosis during the past 100 years. Am. J. Respir. Crit. Care Med.171(7), 699–706 (2005).
  • Dye C. Global epidemiology of tuberculosis. Lancet367(9514), 938–940 (2006).
  • Blumberg HM, Burman WJ, Chaisson RE et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am. J. Respir. Crit. Care Med.167(4), 603–662 (2003).
  • Treatment of pulmonary tuberculosis with streptomycin and para-aminosalicylic acid; a Medical Research Council investigation. Br. Med. J.2(4688), 1073–1085 (1950).
  • Rieder HL, Arnadottir T, Trebucq A, Enarson DA. Tuberculosis treatment: dangerous regimens? Int. J. Tuberc. Lung Dis.5(1), 1–3 (2001).
  • Iseman MD. Treatment of multidrug-resistant tuberculosis. N. Engl. J. Med.329(11), 784–791 (1993).
  • Wright A, Zignol M, Van Deun A et al. Epidemiology of antituberculosis drug resistance 2002–2007: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Lancet373(9678), 1861–1873 (2009).
  • Shah NS, Wright A, Bai GH et al. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg. Infect. Dis.13(3), 380–387 (2007).
  • Gandhi NR, Moll A, Sturm AW et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet368(9547), 1575–1580 (2006).
  • Boshoff HI, Barry CE 3rd. Tuberculosis – metabolism and respiration in the absence of growth. Nat. Rev. Microbiol.3(1), 70–80 (2005).
  • Mitchison DA. Role of individual drugs in the chemotherapy of tuberculosis. Int. J. Tuberc. Lung Dis.4(9), 796–806 (2000).
  • Bennett DE, Courval JM, Onorato I et al. Prevalence of tuberculosis infection in the United States population: the national health and nutrition examination survey, 1999–2000. Am. J. Respir. Crit. Care Med.177(3), 348–355 (2008).
  • Law KF, Jagirdar J, Weiden MD, Bodkin M, Rom WN. Tuberculosis in HIV-positive patients: cellular response and immune activation in the lung. Am. J. Respir. Crit. Care Med.153(4 Pt 1), 1377–1384 (1996).
  • Nakata K, Rom WN, Honda Y et al.Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication in the lung. Am. J. Respir. Crit. Care Med.155(3), 996–1003 (1997).
  • Weiden M, Tanaka N, Qiao Y et al. Differentiation of monocytes to macrophages switches the Mycobacterium tuberculosis effect on HIV-1 replication from stimulation to inhibition: modulation of interferon response and CCAAT/enhancer binding protein beta expression. J. Immunol.165(4), 2028–2039 (2000).
  • Sandman L, Schluger NW, Davidow AL, Bonk S. Risk factors for rifampin-monoresistant tuberculosis: a case-control study. Am. J. Respir. Crit. Care Med.159(2), 468–472 (1999).
  • Vernon A, Burman W, Benator D, Khan A, Bozeman L. Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid. Tuberculosis Trials Consortium. Lancet,353(9167), 1843–1847 (1999).
  • Burman W, Benator D, Vernon A et al. Acquired rifamycin resistance with twice-weekly treatment of HIV-related tuberculosis. Am. J. Respir. Crit. Care Med.173(3), 350–356 (2006).
  • Swaminathan S, Narendran G, Venkatesan P et al. Efficacy of a 6-month versus 9-month intermittent treatment regimen in HIV-infected patients with tuberculosis: a randomized clinical trial. Am. J. Respir. Crit. Care Med.181(7), 743–751 (2010).
  • Benator D, Bhattacharya M, Bozeman L et al. Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomised clinical trial. Lancet360(9332), 528–534 (2002).
  • Mocroft A, Vella S, Benfield TL et al. Changing patterns of mortality across Europe in patients infected with HIV-1. EuroSIDA Study Group. Lancet352(9142), 1725–1730 (1998).
  • Palella FJ Jr, Delaney KM, Moorman AC et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N. Engl. J. Med.338(13), 853–860 (1998).
  • Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin. Pharmacokinetics40(5), 327–341 (2001).
  • Akksilp S, Karnkawinpong O, Wattanaamornkiat W et al. Antiretroviral therapy during tuberculosis treatment and marked reduction in death rate of HIV-infected patients, Thailand. Emerg. Infect. Dis.13(7), 1001–1007 (2007).
  • Saraceni V. HAART use and survival in the thrio Cohort, Rio de Janeiro, Brazil. Presented at: Oral Abstract Session: AIDS 2008 – XVII International AIDS Conference. Mexico City, Mexico, 3–8 August 2008.
  • Burman W, Weis S, Vernon A et al. Frequency, severity and duration of immune reconstitution events in HIV-related tuberculosis. Int. J. Tuberc. Lung Dis.11(12), 1282–1289 (2007).
  • Lawn SD, Myer L, Bekker LG, Wood R. Tuberculosis-associated immune reconstitution disease: incidence, risk factors and impact in an antiretroviral treatment service in South Africa. AIDS21(3), 335–341 (2007).
  • Gardner CA, Acharya T, Pablos-Mendez A. The global alliance for tuberculosis drug development – accomplishments and future directions. Clin. Chest Med.26(2), 341–347, vii (2005).
  • Glickman SW, Rasiel EB, Hamilton CD, Kubataev A, Schulman KA. Medicine.A portfolio model of drug development for tuberculosis. Science311(5765), 1246–1247 (2006).
  • Ryan F. The Forgotten Plague: How the Battle against Tuberculosis Was Won and Lost. Little Brown, MA, USA (1992).
  • Nwaka S, Ridley RG. Virtual drug discovery and development for neglected diseases through public-private partnerships. Nat. Rev. Drug Discov.2(11), 919–928 (2003).
  • Murphy DJ, Brown JR. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect. Dis.7, 84 (2007).
  • Fu LM, Tai SC. The differential gene expression pattern of mycobacterium tuberculosis in response to capreomycin and PA-824 versus first-line TB Drugs reveals stress- and PE/PPE-related drug targets. Int. J. Microbiol.2009, 879621 (2009).
  • Manjunatha UH, Boshoff H, Dowd CS et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis.Proc. Natl Acad. Sci. USA103(2), 431–436 (2006).
  • Murillo AC, Li HY, Alber T et al. High throughput crystallography of TB drug targets. Infect. Disord. Drug Targets7(2), 127–139 (2007).
  • Shoichet BK. Virtual screening of chemical libraries. Nature432(7019), 862–865 (2004).
  • Jindani A, Aber VR, Edwards EA, Mitchison DA. The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am. Rev. Respir. Dis.121(6), 939–949 (1980).
  • Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun.64(6), 2062–2069 (1996).
  • Lim A, Eleuterio M, Hutter B, Murugasu-Oei B, Dick T. Oxygen depletion-induced dormancy in Mycobacterium bovis BCG. J. Bacteriol.181(7), 2252–2256 (1999).
  • Voskuil MI, Schnappinger D, Visconti KC et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med.198(5), 705–713 (2003).
  • Mitchison DA, Coates AR. Predictive in vitro models of the sterilizing activity of anti-tuberculosis drugs. Curr. Pharm. Des.10(26), 3285–3295 (2004).
  • Loebel RO, Shorr E, Richardson HB. The influence of foodstuffs upon the respiratory metabolism and growth of human tubercle bacilli. J. Bacteriol.26(2), 139–166 (1933).
  • Gengenbacher M, Rao SP, Pethe K, Dick T. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology156(Pt 1), 81–87 (2010).
  • Orme IM. The mouse as a useful model of tuberculosis. Tuberculosis (Edinb.)83(1–3), 112–115 (2003).
  • Nuermberger EL, Yoshimatsu T, Tyagi S et al. Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am. J. Respir. Crit. Care Med.170(10), 1131–1134 (2004).
  • Lenaerts AJ, Degroote MA, Orme IM. Preclinical testing of new drugs for tuberculosis: current challenges. Trends Microbiol.16(2), 48–54 (2008).
  • McCune RM Jr., Tompsett R. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J. Exp. Med.104(5), 737–762 (1956).
  • McMurray DN, Collins FM, Dannenberg AM Jr, Smith DW. Pathogenesis of experimental tuberculosis in animal models. Curr. Top. Microbiol. Immunol.215, 157–179 (1996).
  • Grange JM. The mystery of the mycobacterial ‘persistor’. Tuber. Lung Dis.73(5), 249–251 (1992).
  • Capuano SV 3rd, Croix DA, Pawar S et al. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect. Immun.71(10), 5831–5844 (2003).
  • Schluger N, Karunakara U, Lienhardt C, Nyirenda T, Chaisson R. Building clinical trials capacity for tuberculosis drugs in high-burden countries. PLoS Med.4(11), e302 (2007).
  • van Niekerk C, Ginsberg A. Assessment of global capacity to conduct tuberculosis drug development trials: do we have what it takes? Int. J. Tuberc. Lung Dis.13(11), 1367–1372 (2009).
  • Rosenthal IM, Zhang M, Almeida D, Grosset JH, Nuermberger EL. Isoniazid or moxifloxacin in rifapentine-based regimens for experimental tuberculosis? Am. J. Respir. Crit. Care Med.178(9), 989–993 (2008).
  • Rosenthal IM, Zhang M, Williams KN et al. Daily dosing of rifapentine cures tuberculosis in three months or less in the murine model. PLoS Med.4(12), e344 (2007).
  • Martinez E, Collazos J, Mayo J. Hypersensitivity reactions to rifampin. Pathogenetic mechanisms, clinical manifestations, management strategies, and review of the anaphylactic-like reactions. Medicine (Baltimore)78(6), 361–369 (1999).
  • Dooley K, Flexner C, Hackman J et al. Repeated administration of high-dose intermittent rifapentine reduces rifapentine and moxifloxacin plasma concentrations. Antimicrob. Agents Chemother.52(11), 4037–4042 (2008).
  • Gay JD, DeYoung DR, Roberts GD. In vitro activities of norfloxacin and ciprofloxacin against Mycobacterium tuberculosis,M. avium complex, M. chelonei,M. fortuitum, and M. kansasii.Antimicrob. Agents Chemother.26(1), 94–96 (1984).
  • Tsukamura M. Antituberculosis activity of ofloxacin (DL 8280) on experimental tuberculosis in mice. Am. Rev. Respir. Dis.132(4), 915 (1985).
  • Klemens SP, Sharpe CA, Rogge MC, Cynamon MH. Activity of levofloxacin in a murine model of tuberculosis. Antimicrob. Agents Chemother.38(7), 1476–1479 (1994).
  • Gosling R, Gillespie S. Moxifloxacin treatment of tuberculosis. Antimicrob. Agents Chemother.48(9), 3642; author reply 3642–3643 (2004).
  • Tahaoglu K, Torun T, Sevim T et al. The treatment of multidrug-resistant tuberculosis in Turkey. N. Engl. J. Med.345(3), 170–174 (2001).
  • Notice to Readers: revised definition of extensively drug-resistant tuberculosis. MMWR Morb. Mortal. Wkly Rep.55(43), 1176 (2006).
  • Johnson JL, Hadad DJ, Boom WH et al. Early and extended early bactericidal activity of levofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int. J. Tuberc. Lung Dis.10(6), 605–612 (2006).
  • Sulochana S, Mitchison DA, Kubendiren G, Venkatesan P, Paramasivan CN. Bactericidal activity of moxifloxacin on exponential and stationary phase cultures of Mycobacterium tuberculosis.J. Chemother.21(2), 127–134 (2009).
  • Gosling RD, Uiso LO, Sam NE et al. The bactericidal activity of moxifloxacin in patients with pulmonary tuberculosis. Am. J. Respir. Crit. Care Med.168(11), 1342–1345 (2003).
  • Veziris N, Lounis N, Chauffour A, Truffot-Pernot C, Jarlier V. Efficient intermittent rifapentine-moxifloxacin-containing short-course regimen for treatment of tuberculosis in mice. Antimicrob. Agents Chemother.49(10), 4015–4019 (2005).
  • Nuermberger EL, Yoshimatsu T, Tyagi S et al. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am. J. Respir. Crit. Care Med.169(3), 421–426 (2004).
  • Rustomjee R, Lienhardt C, Kanyok T et al. A Phase II study of the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int. J. Tuberc. Lung Dis.12(2), 128–138 (2008).
  • Conde MB, Efron A, Loredo C et al. Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a double-blind, randomised, controlled Phase II trial. Lancet373(9670), 1183–1189 (2009).
  • Dorman SE, Johnson JL, Goldberg S et al. Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am. J. Respir. Crit. Care Med.180(3), 273–280 (2009).
  • Wang JY, Wang JT, Tsai TH et al. Adding moxifloxacin is associated with a shorter time to culture conversion in pulmonary tuberculosis. Int. J. Tuberc. Lung Dis.14(1), 65–71 (2010).
  • Disratthakit A, Doi N. In vitro activities of DC-159a, a new-generation fluoroquinolone, against mycobacterium species. Antimicrob. Agents Chemother. DOI:10.1128/AAC.01545-09 (2010) (Epub ahead of print).
  • Andries K, Verhasselt P, Guillemont J et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis.Science307(5707), 223–227 (2005).
  • Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ et al. Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob. Agents Chemother.53(3), 1290–1292 (2009).
  • Huitric E, Verhasselt P, Andries K, Hoffner SE. In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob. Agents Chemother.51(11), 4202–4204 (2007).
  • Rustomjee R, Diacon AH, Allen J et al. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. Antimicrob. Agents Chemother.52(8), 2831–2835 (2008).
  • Koul A, Vranckx L, Dendouga N et al. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J. Biol. Chem.283(37), 25273–25280 (2008).
  • Lounis N, Veziris N, Chauffour A, Truffot-Pernot C, Andries K, Jarlier V. Combinations of R207910 with drugs used to treat multidrug-resistant tuberculosis have the potential to shorten treatment duration. Antimicrob. Agents Chemother.50(11), 3543–3547 (2006).
  • Veziris N, Ibrahim M, Lounis N et al. A once-weekly R207910-containing regimen exceeds activity of the standard daily regimen in murine tuberculosis. Am. J. Respir. Crit. Care Med.179(1), 75–79 (2009).
  • Nuermberger E, Mitchison DA. Once-weekly treatment of tuberculosis with the diarylquinoline R207910: a real possibility. Am. J. Respir. Crit. Care Med.179(1), 2–3 (2009).
  • Barry CE 3rd. Unorthodox approach to the development of a new antituberculosis therapy. N. Engl. J. Med.360(23), 2466–2467 (2009).
  • Ibrahim M, Truffot-Pernot C, Andries K, Jarlier V, Veziris N. Sterilizing activity of R207910 (TMC207)-containing regimens in the murine model of tuberculosis. Am. J. Respir. Crit. Care Med.180(6), 553–557 (2009).
  • Diacon AH, Pym A, Grobusch M et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med.360(23), 2397–2405 (2009).
  • Colca JR, McDonald WG, Waldon DJ et al. Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. J. Biol. Chem.278(24), 21972–21979 (2003).
  • Zurenko GE, Ford CW, Hutchinson DK, Brickner SJ, Barbachyn MR. Oxazolidinone antibacterial agents: development of the clinical candidates eperezolid and linezolid. Expert Opin. Investig. Drugs6(2), 151–158 (1997).
  • Ashtekar DR, Costa-Periera R, Shrinivasan T, Iyyer R, Vishvanathan N, Rittel W. Oxazolidinones, a new class of synthetic antituberculosis agent. In vitro and in vivo activities of DuP-721 against Mycobacterium tuberculosis.Diagn. Microbiol. Infect. Dis.14(6), 465–471 (1991).
  • Cynamon MH, Klemens SP, Sharpe CA, Chase S. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob. Agents Chemother.43(5), 1189–1191 (1999).
  • Sood R, Bhadauriya T, Rao M et al. Antimycobacterial activities of oxazolidinones: a review. Infect. Disord. Drug Targets6(4), 343–354 (2006).
  • Fortun J, Martin-Davila P, Navas E et al. Linezolid for the treatment of multidrug-resistant tuberculosis. J. Antimicrob. Chemother.56(1), 180–185 (2005).
  • Adams BK, Youssef I, Parkar S. Tc-99m ciprofloxacin (infecton) in abdominal tuberculosis. Clin. Nucl. Med.31(3), 157–158 (2006).
  • von der Lippe B, Sandven P, Brubakk O. Efficacy and safety of linezolid in multidrug resistant tuberculosis (MDR-TB) – a report of ten cases. J. Infect.52(2), 92–96 (2006).
  • Condos R, Hadgiangelis N, Leibert E, Jacquette G, Harkin T, Rom WN. Case series report of a linezolid-containing regimen for extensively drug-resistant tuberculosis. Chest134(1), 187–192 (2008).
  • Park IN, Hong SB, Oh YM et al. Efficacy and tolerability of daily-half dose linezolid in patients with intractable multidrug-resistant tuberculosis. J. Antimicrob. Chemother.58(3), 701–704 (2006).
  • Bressler AM, Zimmer SM, Gilmore JL, Somani J. Peripheral neuropathy associated with prolonged use of linezolid. Lancet Infect. Dis.4(8), 528–531 (2004).
  • Koh WJ, Kwon OJ, Gwak H et al. Daily 300 mg dose of linezolid for the treatment of intractable multidrug-resistant and extensively drug-resistant tuberculosis. J. Antimicrob. Chemother.64(2), 388–391 (2009).
  • Richter E, Rusch-Gerdes S, Hillemann D. First linezolid-resistant clinical isolates of Mycobacterium tuberculosis.Antimicrob. Agents Chemother.51(4), 1534–1536 (2007).
  • Williams KN, Stover CK, Zhu T et al. Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model. Antimicrob. Agents Chemother.53(4), 1314–1319 (2009).
  • Williams KN, Brickner SJ, Stover CK et al. Addition of PNU-100480 to first-line drugs shortens the time needed to cure murine tuberculosis. Am. J. Respir. Crit. Care Med.180(4), 371–376 (2009).
  • Sood R, Rao M, Singhal S, Rattan A. Activity of RBx 7644 and RBx 8700, new investigational oxazolidinones, against Mycobacterium tuberculosis infected murine macrophages. Int. J. Antimicrob. Agents25(6), 464–468 (2005).
  • Rao M, Sood R, Malhotra S, Fatma T, Upadhyay DJ, Rattan A. In vitro bactericidal activity of oxazolidinone, RBx 8700 against Mycobacterium tuberculosis and Mycobacterium avium complex. J. Chemother.18(2), 144–150 (2006).
  • Zhang Y. Persistent and dormant tubercle bacilli and latent tuberculosis. Front Biosci.9, 1136–1156 (2004).
  • Cynamon MH, Palmer GS. In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium tuberculosis. Antimicrob. Agents Chemother.24(3), 429–431 (1983).
  • Chambers HF, Kocagoz T, Sipit T, Turner J, Hopewell PC. Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin. Infect. Dis.26(4), 874–877 (1998).
  • Hugonnet JE, Blanchard JS. Irreversible inhibition of the Mycobacterium tuberculosis beta-lactamase by clavulanate. Biochemistry46(43), 11998–12004 (2007).
  • Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE 3rd, Blanchard JS. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis.Science323(5918), 1215–1218 (2009).
  • Paramasivan CN, Kubendiran G, Herbert D. Action of metronidazole in combination with isoniazid & rifampicin on persisting organisms in experimental murine tuberculosis. Indian J. Med. Res.108, 115–119 (1998).
  • Wayne LG, Sramek HA. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis.Antimicrob. Agents Chemother.38(9), 2054–2058 (1994).
  • Brooks JV, Furney SK, Orme IM. Metronidazole therapy in mice infected with tuberculosis. Antimicrob. Agents Chemother.43(5), 1285–1288 (1999).
  • Dhillon J, Allen BW, Hu YM, Coates AR, Mitchison DA. Metronidazole has no antibacterial effect in Cornell model murine tuberculosis. Int. J. Tuberc. Lung Dis.2(9), 736–742 (1998).
  • Klinkenberg LG, Sutherland LA, Bishai WR, Karakousis PC. Metronidazole lacks activity against Mycobacterium tuberculosis in an in vivo hypoxic granuloma model of latency. J. Infect. Dis.198(2), 275–283 (2008).
  • Iona E, Giannoni F, Pardini M, Brunori L, Orefici G, Fattorini L. Metronidazole plus rifampin sterilizes long-term dormant Mycobacterium tuberculosis.Antimicrob. Agents Chemother.51(4), 1537–1540 (2007).
  • Stover CK, Warrener P, VanDevanter DR et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature405(6789), 962–966 (2000).
  • Singh R, Manjunatha U, Boshoff HI et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science322(5906), 1392–1395 (2008).
  • Tyagi S, Nuermberger E, Yoshimatsu T et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob. Agents Chemother.49(6), 2289–2293 (2005).
  • Barry CE 3rd, Boshoff HI, Dowd CS. Prospects for clinical introduction of nitroimidazole antibiotics for the treatment of tuberculosis. Curr. Pharm. Des.10(26), 3239–3262 (2004).
  • Manjunatha U, Boshoff HI, Barry CE. The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun. Integr. Biol.2(3), 215–218 (2009).
  • Thompson AM, Blaser A, Anderson RF et al. Synthesis, reduction potentials, and antitubercular activity of ring A/B analogues of the bioreductive drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2, 1-b][1,3]oxazine (PA-824). J. Med. Chem.52(3), 637–645 (2009).
  • Hu Y, Coates AR, Mitchison DA. Comparison of the sterilising activities of the nitroimidazopyran PA-824 and moxifloxacin against persisting Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis.12(1), 69–73 (2008).
  • Ginsberg AM, Laurenzi MW, Rouse DJ, Whitney KD, Spigelman MK. Safety, tolerability, and pharmacokinetics of PA-824 in healthy subjects. Antimicrob. Agents Chemother.53(9), 3720–3725 (2009).
  • Ginsberg AM, Laurenzi MW, Rouse DJ, Whitney KD, Spigelman MK. Assessment of the effects of the nitroimidazo-oxazine PA-824 on renal function in healthy subjects. Antimicrob. Agents Chemother.53(9), 3726–3733 (2009).
  • Ginsberg AM. Tuberculosis drug development: progress, challenges, and the road ahead. Tuberculosis (Edinb.) DOI:10.1016/j.tube.2010.03.003 (2010) (Epub ahead of print).
  • Matsumoto M, Hashizume H, Tomishige T et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med.3(11), e466 (2006).
  • Protopopova M, Hanrahan C, Nikonenko B et al. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J. Antimicrob. Chemother.56(5), 968–974 (2005).
  • Boshoff HI, Myers TG, Copp BR et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem.279(38), 40174–40184 (2004).
  • Jia L, Noker PE, Coward L, Gorman GS, Protopopova M, Tomaszewski JE. Interspecies pharmacokinetics and in vitro metabolism of SQ109. Br. J. Pharmacol.147(5), 476–485 (2006).
  • Jia L, Tomaszewski JE, Hanrahan C et al. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br. J. Pharmacol.144(1), 80–87 (2005).
  • Chen P, Gearhart J, Protopopova M, Einck L, Nacy CA. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro.J. Antimicrob. Chemother.58(2), 332–337 (2006).
  • Nikonenko BV, Protopopova M, Samala R, Einck L, Nacy CA. Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob. Agents Chemother.51(4), 1563–1565 (2007).
  • Meng Q, Luo H, Liu Y, Li W, Zhang W, Yao Q. Synthesis and evaluation of carbamate prodrugs of SQ109 as antituberculosis agents. Bioorg. Med. Chem. Lett.19(10), 2808–2810 (2009).
  • Lin G, Li D, de Carvalho LP et al. Inhibitors selective for mycobacterial versus human proteasomes. Nature461(7264), 621–626 (2009).
  • Deidda D, Lampis G, Fioravanti R et al. Bactericidal activities of the pyrrole derivative BM212 against multidrug-resistant and intramacrophagic Mycobacterium tuberculosis strains. Antimicrob. Agents Chemother.42(11), 3035–3037 (1998).
  • Biava M, Porretta GC, Poce G et al. Antimycobacterial agents. Novel diarylpyrrole derivatives of BM212 endowed with high activity toward Mycobacterium tuberculosis and low cytotoxicity. J. Med. Chem.49(16), 4946–4952 (2006).
  • Sinha RK, Arora SK, Sinha N et al.In vivo activity of LL4858 against Mycobacterium tuberculosis. Presented at: The 44th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). WA, USA, 30 October–2 November 2004.
  • Arora SK, Sinha N, Sinha RK et al. Synthesis and in vitro anti-mycobacterial activity of a novel anti-TB composition LL4858. Presented at: The 44th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). WA, USA, 30 October–2 November 2004.
  • Nikonenko BV, Reddy VM, Protopopova M, Bogatcheva E,Einck L, Nacy CA. Activity of SQ641, a capuramycin analog, in a murine model of tuberculosis. Antimicrob. Agents Chemother.53(7), 3138–3139 (2009).
  • Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet349(9064), 1513–1515 (1997).
  • Condos R, Raju B, Canova A et al. Recombinant gamma interferon stimulates signal transduction and gene expression in alveolar macrophages in vitro and in tuberculosis patients. Infect. Immun.71(4), 2058–2064 (2003).
  • Dawson R, Condos R, Tse D et al. Immunomodulation with recombinant interferon-gamma1b in pulmonary tuberculosis. PLoS One4(9), e6984 (2009).
  • Ahmad Z, Sharma S, Khuller GK. Azole antifungals as novel chemotherapeutic agents against murine tuberculosis. FEMS Microbiol. Lett.261(2), 181–186 (2006).
  • Huang Q, Kirikae F, Kirikae T et al. Targeting FtsZ for antituberculosis drug discovery: noncytotoxic taxanes as novel antituberculosis agents. J. Med. Chem.49(2), 463–466 (2006).
  • Dutta NK, Mazumdar K, DasGupta A, Dastidar SG. Activity of the phenothiazine methdilazine alone or in combination with isoniazid or streptomycin against Mycobacterium tuberculosis in mice. J. Med. Microbiol.58(Pt 12), 1667–1668 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.