110
Views
8
CrossRef citations to date
0
Altmetric
Review

Resistant pathogen-associated skin and skin-structure infections: antibiotic options

Pages 1019-1036 | Published online: 10 Jan 2014

References

  • Centers for Disease Control. Incidence of soft tissue infections: San Francisco General Hospital – 1996–2000. Morb. Mortal. Wkly Rep.50, 381–384 (2001).
  • Nichols RL, Florman S. Clinical presentations of soft tissue infections and surgical site infections. Clin. Infect. Dis.33(Suppl. 2), S84–S93 (2001).
  • Jones ME, Karlowsky JA, Draghi DC, Thornsberry C, Sahm DF, Nathwani D. Epidemiology and antibiotic susceptibility of bacteria causing skin and soft tissue infections in the USA and Europe: a guide to appropriate antimicrobial therapy. Int. J. Antimicrob. Agents22, 406–419 (2003).
  • Jones ME, Schmitz FJ, Fluit AC, Acar J, Gupta R, Verhoef J. Frequency of occurrence and antimicrobial susceptibility of bacterial pathogens associated with skin and soft tissue infections during 1997 from an International Surveillance Programme SENTRY Participants Group. Eur. J. Clin. Microbiol. Infect. Dis.8, 403–408 (1999).
  • Naimi TS, LeDell KH, Como-Sabetti K et al. Comparison of community and health care-associated methicilin-resistant Staphylococcus aureus infection. JAMA290, 2976–2984 (2003).
  • King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft tissue infections. Ann. Intern. Med.144, 309–317 (2006).
  • Oztoprak N, Cevik MA, Akinci E et al. Risk factors for ICU-acquired methicillin-resistant Staphylococcus aureus infections. Am. J. Infect. Control.34, 1–5 (2006).
  • Monnet DL, MacKenzie FM, Lopez-Lozano JM et al. Antimicrobial drug use and methicillin-resistant Staphylococcus aureus, Aberdeen, 1996–2000. Emerg. Infect. Dis.10, 1432–1441 (2004).
  • Ostrowsky BE, Venkataraman L, D’Agata EM, Gold HS, DeGirolami PC, Samore MH. Vancomycin-resistant enterococci in intensive care units: high frequency of stool carriage during a non-outbreak period. Arch. Intern. Med.159, 1467–1472 (1999).
  • Pegues DA, Pegues CF, Hibberd PL, Ford DS, Hooper DC. Emergence and dissemination of a highly vancomycin-resistant vanA strain of Enterococcus faecium at a large teaching hospital. J. Clin. Microbiol.35, 1565–1570 (1997).
  • Patterson JE, Hardin TC, Kelly CA, Garcia RC, Jorgensen JH. Association of antibiotic utilization measures and control of multiple-drug resistance in Klebsiella pneumoniae. Infect. Control Hosp. Epidemiol.21, 455–458 (2000).
  • Cao B, Wang H, Sun H, Zhu Y, Chen M. Risk factors and clinical outcomes of nosocomial multi-drug resistant Pseudomonas aeruginosa infections. J. Hosp. Infect.57, 112–118 (2004).
  • Lee SO, Kim NJ, Choi SH et al. Risk factors for acquisition of imipenem-resistant Acinetobacter baumannii: a case–control study. Antimicrob. Agents Chemother.48, 224–228 (2004).
  • Landman D, Quale JM, Mayorga D et al. Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned. Arch. Intern. Med.162, 1515–1520 (2002).
  • Colodner R, Rock W, Chazan B et al. Risk factors for the development of extended-spectrum β-lactamase-producing bacteria in nonhospitalized patients. Eur. J. Clin. Microbiol. Infect. Dis.23, 163–167 (2004).
  • Eagye KJ, Kuti JL, Nicolau DP. Risk factors and outcomes associated with isolation of meropenem high-level-resistant Pseudomonas aeruginosa. Infect. Control Hosp. Epidemiol.30, 746–752 (2009).
  • Tsai HT, Wang JT, Chen CJ, Chang SC. Association between antibiotic usage and subsequent colonization or infection of extensive drug-resistant Acinetobacter baumannii: a matched case–control study in intensive care units. Diagn. Microbiol. Infect. Dis.62, 298–305 (2008).
  • Markogiannakis A, Fildisis G, Tsiplakou S et al. Cross-transmission of multidrug resistant Acinetobacter baumannii clonal strains causing episodes of sepsis in a trauma intensive care unit. Infect. Control Hosp. Epidemiol.29, 410–417 (2008).
  • Giske CG, Monnet DL, Cars O, Carmeli Y; on behalf of ReAct-Action on Antibiotic Resistance. Clinical and economic impact of common multidrug-resistant Gram-negative bacilli. Antimicrob. Agents Chemother.52, 813–821 (2008).
  • Meyer E, Schwab F, Gastmeier P, Rueden H, Daschner FD. Surveillance of antimicrobial use and antimicrobial resistance in German intensive care units (SARI): a summary of the data from 2001 through 2004. Infection34, 303–309 (2006).
  • Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J. Infect. Dis.197, 1079–1081 (2008).
  • Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit. Care Med.31, 2742–2751 (2003).
  • Ibrahim E, Sherman G, Ward S, Fraser VJ, Kollef M. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest118, 146–155 (2000).
  • Luna CM, Vujacich P, Niederman MS et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest111, 676–685 (1997).
  • Mosdell DM, Morris DM, Voltura A et al. Antibiotic treatment for surgical peritonitis. Ann. Surg.214, 543–549 (1991).
  • Eagye KJ, Kim A, Laohavaleeson S, Kuti JL, Nicolau DP. Surgical site infections: does inadequate antibiotic therapy affect patient outcomes? Surg. Infect. (Larchmt)10(4), 323–331 (2009).
  • Moet GJ, Jones RN, Biedenbach DJ, Stilwell MG, Fritsche TR. Contemporary causes of skin and soft tissue infections in North America, Latin America, and Europe: report from the SENTRY Antimicrobial Surveillance Program (1998–2004). Diagn. Microbiol. Infect. Dis.57, 7–13 (2007).
  • Nichols RL, Florman S. Clinical presentations of soft tissue infections and surgical site infections. Clin. Infect. Dis.33, S84–S93 (2001).
  • Hidron AI, Edwards JR, Patel J et al. National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol.29(11), 996–1011 (2008).
  • Grundmann H, Aires de Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of methicillin-resistant Staphylococcus aureus as a public health threat. Lancet368, 874–885 (2006).
  • Tong SY, McDonald MI, Holt DC, Currie BJ. Global implications of the emergence of community-associated meticillin-resistant Staphylococcus aureus in indigenous populations. Clin. Infect. Dis.46, 1871–1878 (2008).
  • Gorwitz RJ. Understanding the success of meticillin-resistant Staphylococcus aureus strains causing epidemic disease in the community. J. Infect. Dis.197, 179–182 (2008).
  • King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann. Intern. Med.144, 309–317 (2006).
  • Moran GJ, Krishnadasan A, Gorwitz RJ et al. Methicillin-resistant S aureus infections among patients in the emergency department. N. Engl. J. Med.355, 666–674 (2006).
  • Vourli S, Vagiakou H, Ganteris G et al. High rates of community-acquired, Panton-Valentine leukocidin (PVL)-positive methicillin-resistant S. aureus (MRSA) infections in adult outpatients in Greece. Euro Surveill.14(2), pii: 19089 (2009).
  • Larsen AR, Bocher S, Stegger M, Goering R, Pallesen LV, Skov R. Epidemiology of European community-associated methicillin-resistant Staphylococcus aureus clonal complex 80 type IV strains isolated in Denmark from 1993 to 2004. J. Clin. Microbiol.46, 62–68 (2008).
  • Al-Rawahi GN, Reynolds S, Porter SD et al. Community-associated CMRSA-10 (USA-300) is the predominant strain among methicillin-resistant Staphylococcus aureus strains causing skin and soft tissue infections in patients presenting to the emergency department of a Canadian tertiary care hospital. J. Emerg. Med.38(1), 6–11 (2010).
  • Wallin TR, Hern HG, Frazee BW. Community-associated methicillin-resistant Staphylococcus aureus. Emerg. Med. Clin. North Am.26, 431–455 (2008).
  • Fridkin SK, Hageman JC, Morrison M et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N. Engl. J. Med.352, 1436–1444 (2005).
  • Magilner D, Byerly MM, Cline DM. The prevalence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) in skin abscesses presenting to the pediatric emergency department. NC Med. J.69, 351–354 (2008).
  • Alvarez CA, Yomayusa N, Leal AL et al. Nosocomial infections caused by community-associated methicillin-resistant Staphylococcus aureus in Colombia. Am. J. Infect. Control38, 315–318 (2010).
  • Maree CL, Daum RS, Boyle-Vavra S, Matayoshi K, Miller LG. Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerg. Infect. Dis.13, 236–242 (2007).
  • Dahms RA, Johnson EM, Statz CL, Lee JT, Dunn DL, Beilman GJ. Third-generation cephalosporins and vancomycin as risk factors for postoperative vancomycin-resistant enterococcus infection. Arch. Surg.133(12), 1343–1346 (1998).
  • Elizaga ML, Weinstein RA, Hayden MK. Patients in long-term care facilities: a reservoir for vancomycin-resistant enterococci. Clin. Infect. Dis.34(4), 441–446 (2002).
  • Rennie RP, Jones RN, Mutnick AH; the SENTRY Program Study Group (North America). Occurrence and antimicrobial susceptibility patterns of pathogens isolated from skin and soft tissue infections: report from the SENTRY Antimicrobial Surveillance Program (United States and Canada, 2000). Diagn. Microbiol. Infect. Dis.45, 287–293 (2003).
  • NNIS System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2003, issued August 2003. Am. J. Infect. Control.31, 481–498 (2003).
  • Karas JA, Pillay DG, Muckart D, Sturm AW. Treatment failure due to extended-spectrum β-lactamase. J. Antimicrob. Chemother.37, 203–204 (1996).
  • Paterson DL, Ko WC, Von Gottberg A et al. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended spectrum β-lactamases: implications for the clinical microbiology laboratory. J. Clin. Microbiol.39, 2206–2212 (2001).
  • Livermore DM. β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev.8, 557–584 (1995).
  • Peña C, Pujol M, Ardanuy C et al. Epidemiology and successful control of a large outbreak due to Klebsiella peumoniae producing extended-spectrum β-lactamases. Antimicrob. Agents Chemother.42, 53–58 (1998).
  • Rahal JJ, Urban C, Horn D et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA280, 1244–1247 (1998).
  • Go ES, Urban C, Burns J et al. Clinical and molecular epidemiology of Acinetobacter infections sensitive only to polymixin B and sulbactam. Lancet344, 1329–1332 (1994).
  • Wong-Beringer A. Therapeutic challenges associated with extended-spectrum, β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Pharmacotherapy21, 583–592 (2001).
  • Rodríguez-Baño J, Cisneros JM, Fernández-Cuenca F et al. Clinical features and epidemiology of Acinetobacter baumannii colonization and infection in Spanish hospitals. Infect. Control. Hosp. Epidemiol.25, 819–824 (2004).
  • Guerrero DM, Perez F, Conger NG et al.Acinetobacter baumannii-associated skin and soft tissue infections: recognizing a broadening spectrum of disease. Surg. Infect. (Larchmt)11(1), 49–57 (2010).
  • Sebeny PJ, Riddle MS, Petersen K. Acinetobacter baumannii skin and soft-tissue infection associated with war trauma. Clin. Infect. Dis.47(4), 444–449 (2008).
  • Leach KL, Swaney SM, Colca JR et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol. Cell26, 393–402 (2007).
  • Eliopoulos GM. Quinupristin/dalfopristin and linezolid: evidence and opinions. Clin. Infect. Dis.36, 473–481 (2003).
  • Stevens DL, Dotter B, Madaras-Kelly A. A review of linezolid: the first oxazolidinone antibiotic. Expert Rev. Anti Infect. Ther.2, 51–59 (2004).
  • Diekema DI, Jones RN. Oxazolidinones: a review. Drugs59, 7–16 (2000).
  • Conte JE Jr, Golden JA, Kipps J, Zurlinden E. Intrapulmonary pharmacokinetics of linezolid. Antimicrob. Agents Chemother.46, 1475–1480 (2002).
  • Stevens DL, Ma Y, Salmi DB, McIndoo E, Wallace RJ, Bryant AE. Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J. Infect. Dis.195, 202–211 (2007).
  • Raad I, Hachem R, Hanna H et al. Prospective, randomized study comparing quinupristin–dalfopristin with linezolid in the treatment of vancomycin-resistant Enterococcus faecium infections. J. Antimicrob. Chemother.53, 646–649 (2004).
  • Erlandson KM, Sun J, Iwen PC, Rupp ME. Impact of the more-potent antibiotics quinupristin–dalfopristin and linezolid on outcome measure of patients with vancomycin-resistant Enterococcus bacteremia. Clin. Infect. Dis.46, 30–36 (2008).
  • Anderegg TR, Sader HS, Fritsche TR, Ross JE, Jones RN. Trends in linezolid susceptibility patterns: report from the 2002–2003 worldwide Zyvox annual appraisal of potency and spectrum (ZAAPS) program. Int. J. Antimicrob. Agents26, 13–21 (2005).
  • Meka VG, Gold HS. Antimicrobial resistance to linezolid. Clin. Infect. Dis.39, 1010–1015 (2004).
  • Jones RN, Ross JE, Fritsche TR, Sader HS. Oxazolidinone susceptibility patterns in 2004: report from the Zyvox annual appraisal of potency and spectrum (ZAAPS) program assessing isolates from 16 nations. J. Antimicrob. Chemother.57, 279–287 (2006).
  • Weigelt J, Itani K, Stevens D, Lau W, Dryden M, Knirsch C. Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob. Agents Chemother.49, 2260–2266 (2005).
  • Sharpe JN, Shively EH, Polk HC Jr. Clinical and economic outcomes of oral linezolid versus intravenous vancomycin in the treatment of MRSA-complicated, lower extremity skin and soft tissue infections caused by methicillin-resistant Staphyloccus aureus. Am. J. Surg.189, 425–428 (2005).
  • Leonard SN, Cheung CM, Rybak MJ. Activities of ceftobiprole, linezolid, vancomycin, and daptomycin against community-associated and hospital associated methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.52, 2974–2976 (2008).
  • Livermore DM, Hope R, Brick G, Lillie M, Reynolds R; BSAC Working Parties on Resistance Surveillance. Nonsusceptibility trends among staphylococci from bacteraemias in the UK and Ireland, 2001–2006. J. Antimicrob. Chemother.62(Suppl. 2), ii65–ii74 (2008).
  • Tsiodras S, Gold HS, Sakoulas G et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet358, 207–208 (2001).
  • Gales AC, Sader HS, Andrade SS, Lutz L, Machado A, Barth AL. Emergence of linezolid-resistant Staphylococcus aureus during treatment of pulmonary infection in a patient with cystic fibrosis. Int. J. Antimicrob. Agents27, 300–302 (2006).
  • Hentschke M, Saager B, Horstkotte MA et al. Emergence of linezolid resistance in a methicillin resistant Staphylococcus aureus strain. Infection36, 85–87 (2008).
  • Stein GE. Safety of newer parenteral antibiotics. Clin. Infect. Dis.41, S293–S302 (2005).
  • Sánchez García M, De la Torre MA, Morales G et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA303, 2260–2264 (2010).
  • Falagas ME, Manta KG, Ntziora F, Vardakas KZ. Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J. Antimicrob. Chemother.58, 273–280 (2006).
  • Falagas ME, Siempos, II, Papagelopoulos PJ, Vardakas KZ. Linezolid for the treatment of adults with bone and joint infections. Int. J. Antimicrob. Agents29, 233–239 (2007).
  • Beekmann SE, Gilbert DN, Polgreen PM. Toxicity of extended courses of linezolid: results of an Infectious Diseases Society of America Emerging Infections Network survey. Diagn. Microbiol. Infect. Dis.62, 407–410 (2008).
  • Moellering RC Jr. Linezolid: the first oxazolidinone antimicrobial. Ann. Intern. Med.138, 135–142 (2003).
  • Bressler AM, Zimmer SM, Gilmore JL, Somani J. Peripheral neuropathy associated with prolonged use of linezolid. Lancet Infect. Dis.4, 528–531 (2004).
  • Senneville E, Legout L, Valette M et al. Risk factors for anaemia in patients on prolonged linezolid therapy for chronic osteomyelitis: a case–control study. J. Antimicrob. Chemother.56, 440–441 (2005).
  • Castanheira M, Jones RN, Sader HS. Update of the in vitro activity of daptomycin tested against 6710 Gram-positive cocci isolated in North America (2006). Diagn. Microbiol. Infect. Dis.61, 235–239 (2008).
  • Carpenter CF, Chambers HF. Daptomycin: another novel agent for treating infections due to drug-resistant Gram-positive pathogens. Clin. Infect. Dis.38, 994–1000 (2004).
  • Eisenstein BI. Lipopeptides, focusing on daptomycin, for the treatment of Gram-positive infections. Expert Opin. Investig. Drugs13, 1159–1169 (2004).
  • Cosgrove SE, Fowler VG Jr. Management of methicillin-resistant Staphylococcus aureus bacteremia. Clin. Infect. Dis.46, S386–S393 (2008).
  • Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI; Daptomycin 98–01 and 99–01 Investigators. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin. Infect. Dis.38, 1673–1681 (2004).
  • Lipsky BA, Stoutenburgh U. Daptomycin for treating infected diabetic foot ulcers: evidence from a randomized, controlled trial comparing daptomycin with vancomycin or semi-synthetic penicillins for complicated skin and skin-structure infections. J. Antimicrob. Chemother.55, 240–245 (2005).
  • Davis SL, McKinnon PS, Hall LM et al. Daptomycin versus vancomycin for complicated skin and skin structure infections: clinical and economic outcomes. Pharmacotherapy27, 1611–1618 (2007).
  • Patel JB, Jevitt LA, Hageman J, McDonald LC, Tenover FC. An association between reduced susceptibility to daptomycin and reduced susceptibility to vancomycin in Staphylococcus aureus. Clin. Infect. Dis.42, 1652–1653 (2006).
  • Quinn B, Hussain S, Malik M, Drlica K, Zhao X. Daptomycin inoculum effects and mutant prevention concentration with Staphylococcus aureus. J. Antimicrob. Chemother.60, 1380–1383 (2007).
  • Mangili A, Bica I, Snydman DR, Hamer DH. Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia. Clin. Infect. Dis.40, 1058–1060 (2005).
  • Lewis JS 2nd, Owens A, Cadena J, Sabol K, Patterson JE, Jorgensen JH. Emergence of daptomycin resistance in Enterococcus faecium during daptomycin therapy. Antimicrob. Agents Chemother.49, 1664–1665 (2005).
  • Munoz-Price LS, Lolans K, Quinn JP. Emergence of resistance to daptomycin during treatment of vancomycin-resistant Enterococcus faecalis infection. Clin. Infect. Dis.41, 565–566 (2005).
  • Hayden MK, Rezai K, Hayes RA, Lolans K, Quinn JP, Weinstein RA. Development of daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol.43, 5285–5287 (2005).
  • Vikram HR, Havill NL, Koeth LM, Boyce JM. Clinical progression of methicillin-resistant Staphylococcus aureus vertebral osteomyelitis associated with reduced susceptibility to daptomycin. J. Clin. Microbiol.43, 5384–5387 (2005).
  • Long JK, Choueiri TK, Hall GS, Avery RK, Sekeres MA. Daptomycin-resistant Enterococcus faecium in a patient with acute myeloid leukemia. Mayo Clin. Proc.80, 1215–1216 (2005).
  • Montero CI, Stock F, Murray PR. Mechanisms of resistance to daptomycin in Enterococcus faecium. Antimicrob. Agents Chemother.52, 1167–1170 (2008).
  • Oleson FB Jr, Berman CL, Kirkpatrick JB, Regan KS, Lai JJ, Tally FP. Once-daily dosing in dogs optimizes daptomycin safety. Antimicrob. Agents Chemother.44, 2948–2953 (2000).
  • Biedenbach DJ, Beach ML, Jones RN. In vitro antimicrobial activity of GAR-936 tested against antibiotic-resistant Gram-positive blood stream infection isolates and strains producing extended-spectrum β-lactamases. Diagn. Microbiol. Infect. Dis.40, 173–177 (2001).
  • Edlund C, Nord CE. In-vitro susceptibility of anaerobic bacteria to GAR-936, a new glycylcycline. Clin. Microbiol. Infect.6, 159–163 (2000).
  • Jones R, Fritsche T, Sader H. Antimicrobial activity of tigecycline (GAR-936) tested against Enterobacteriaceae, and selected non-fermentative Gram-negative bacilli, a worldwide sample. Abstract P939. Clin. Microbiol. Infect.10(Suppl. 3), 247 (2004).
  • Jones RN. Disk diffusion susceptibility test development for the new glycylcycline, GAR-936. Diagn. Microbiol. Infect. Dis.35, 249–252 (1999).
  • Noskin GA. Tigecycline: a new glycylcycline for treatment of serious infections. Clin. Infect. Dis.41, S303–S314 (2005).
  • Projan SJ. Preclinical pharmacology of GAR-936, a novel glycylcycline antibacterial agent. Pharmacotherapy20, 219S–228S (2000).
  • Stein GE, Craig WA. Tigecycline: a critical analysis. Clin. Infect. Dis.3, 518–524 (2006).
  • Meagher AK, Cirincione BB, Liolios KA. Pharmacokinetics of tigecycline in healthy adult volunteers and in subjects with renal impairment. Clin. Microbiol. Infect.10(Suppl. 3), 274 (2004) (Abstract P1023).
  • Ellis-Grosse EJ, Babinchak T, Dartois N, Rose G, Loh E. The efficacy and safety of tigecycline in the treatment of skin and skin-structure infections: results of 2 double-blind phase 3 comparison studies with vancomycin-aztreonam. Clin. Infect. Dis.41, S341–S353 (2005).
  • Florescu I, Beuran M, Dimov R et al. Efficacy and safety of tigecycline compared with vancomycin or linezolid for treatment of serious infections with methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci: a Phase 3, multicentre, double-blind, randomized study. J. Antimicrob. Chemother.62, i17–i28 (2008).
  • Kelesidis T, Karageorgopoulos DE, Kelesidis I, Falagas ME. Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae: a systematic review of the evidence from microbiological and clinical studies. J. Antimicrob. Chemother.62, 895–904 (2008).
  • Karageorgopoulos DE, Kelesidis T, Kelesidis I, Falagas ME. Tigecycline for the treatment of multidrug-resistant (including carbapenem-resistant) Acinetobacter infections: a review of the scientific evidence. J. Antimicrob. Chemother.62, 45–55 (2008).
  • Vasilev K, Reshedko G, Orasan R et al. A Phase 3, open-label, non-comparative study of tigecycline in the treatment of patients with selected serious infections due to resistant Gram negative organisms including Enterobacter species, Acinetobacter baumannii and Klebsiella pneumoniae. J. Antimicrob. Chemother.62, i29–i40 (2008).
  • Gordon NC, Wareham DW. A review of clinical and microbiological outcomes following treatment of infections involving multidrug-resistant Acinetobacter baumannii with tigecycline. J. Antimicrob. Chemother.63, 775–780 (2009).
  • Bishburg E, Bishburg K. Minocycline – an old drug for a new century: emphasis on methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii. Int. J. Antimicrob. Agents34, 395–401 (2009).
  • Attwood RJ, LaPlante KL. Telavancin: a novel lipoglycopeptide antimicrobial agent. Am. J. Health Syst. Pharm.64, 2335–2348 (2007).
  • King A, Phillips I, Kaniga K. Comparative in vitro activity of telavancin (TD-6424), a rapidly bactericidal, concentration-dependent anti-infective with multiple mechanisms of action against Gram-positive bacteria. J. Antimicrob. Chemother.53, 797–803 (2004).
  • Gander S, Kinnaird A, Finch R. Telavancin: in vitro activity against staphylococci in a biofilm model. J. Antimicrob. Chemother.56, 337–343 (2005).
  • Leuthner KD, Cheung CM, Rybak MJ. Comparative activity of the new lipoglycopeptide telavancin in the presence and absence of serum against 50 glycopeptide non-susceptible staphylococci and three vancomycin-resistant Staphylococcus aureus. J. Antimicrob. Chemother.58, 338–343 (2006).
  • Leonard SN, Rybak MJ. Telavancin: an antimicrobial with a multifunctional mechanism of action for the treatment of serious Gram-positive infections. Pharmacotherapy28, 458–468 (2008).
  • Zhanel GG, Trapp S, Gin AS et al. Dalbavancin and telavancin: novel lipoglycopeptides for the treatment of Gram-positive infections. Expert Rev. Anti Infect. Ther.6(1), 67–81 (2008).
  • Van Bambeke F, Van Laethem Y, Courvalin P, Tulkens PM. Glycopeptide antibiotics from conventional molecules to new derivatives. Drugs64(9), 913–936 (2004).
  • Malabarba A, Goldstein BP. Origin, structure, and activity in vitro and in vivo of dalbavancin. J. Antimicrob. Chemother.55, ii15–ii20 (2005).
  • Candiani G, Abbondi M, Borgonovi M, Romanò G, Parenti F. In-vitro and in-vivo antibacterial activity of BI 397, a new semi-synthetic glycopeptide antibiotic. J. Antimicrob. Chemother.44, 179–192 (1999).
  • Van Bambeke F. Glycopeptides and glycodepsipeptides in clinical development: a comparative review of their antibacterial spectrum, pharmacokinetics, and clinical efficacy. Curr. Opin. Investig. Drugs7(8), 740–749 (2006).
  • Goldstein BP, Draghi DC, Sheehan DJ, Hogan P, Sahm DF. Bactericidal activity and resistance development profiling of dalbavancin. Antimicrob. Agents Chemother.51(4), 1150–1154 (2007).
  • Jauregui LE, Babazadeh S, Seltzer E et al. Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin. Infect. Dis.41, 1407–1415 (2005).
  • Chen AY, Zervos MJ, Vazquez JA. Dalbavancin: a novel antimicrobial. Int. J. Clin. Pract.61(5), 853–863 (2007).
  • Seltzer E, Dorr MB, Goldstein BP, Perry M, Dowell JA, Henkel T; Dalbavancin Skin and Soft-Tissue Infection Study Group. Once-weekly dalbavancin versus standard-of-care antimicrobial regimens for treatment of skin and soft-tissue infections. Clin. Infect. Dis.37, 1298–1303 (2003).
  • Lin S-W, Carver PL, DePestel DD. Dalbavancin: a new option for the treatment of Gram-positive infections. Ann. Pharmacother.40, 449–460 (2006).
  • Leighton A, Gottlieb AB, Dorr MB et al. Tolerability, pharmacokinetics, and serum bactericidal activity of intravenous dalbavancin in healthy volunteers. Antimicrob. Agents Chemother.48, 940–945 (2004).
  • Van Bambeke F, Van Laethem YV, Courvalin P et al. Glycopeptide antibiotics from conventional molecules to new derivatives. Drugs64(9), 913–936 (2004).
  • Judice JK, Pace JL. Semi-synthetic glycopeptide antibacterials. Bioorg. Med. Chem. Lett.13, 4165–4168 (2003).
  • Manfredi R, Sabbatani S. Novel pharmaceutical molecules against emerging resistant Gram-positive cocci. Braz. J. Infect. Dis.14(1), 96–108 (2010).
  • Mercier R-C, Hrebickova L. Oritavancin: a new avenue for resistant Gram-positive bacteria. Expert Rev. Anti Infect. Ther.3(3), 325–332 (2005).
  • Bhavnani SM, Owen JS, Loutit JS, Porter SB, Ambrose PG. Pharmacokinetics, safety, and tolerability of ascending single intravenous doses of oritavancin administered to healthy human subjects. Diagn. Microbiol. Infect. Dis.50, 95–102 (2004).
  • Kanafani ZA, Corey GR. Ceftaroline: a cephalosporin with expanded Gram positive activity. Future Microbiol.4, 25–33 (2009).
  • Sader HS, Fritsche TR, Kaniga K, Ge Y, Jones RN. Antimicrobial activity and spectrum of PPI-0903M (T-91825), a novel cephalosporin, tested against a worldwide collection of clinical strains. Antimicrob. Agents Chemother.49(8), 3501–3512 (2005).
  • Mushtaq S, Warner M, Ge Y, Kaniga K, Livermore DM. In vitro activity of ceftaroline (PPI-0903M, T-91825) against bacteria with defined resistance mechanisms and phenotypes. J. Antimicrob. Chemother.60, 300–311 (2007).
  • Ge Y, Biek D, Talbot GH, Sahm DF. In vitro profiling of ceftaroline against a collection of recent bacterial clinical isolates from across the United States. Antimicrob. Agents Chemother.52(9), 3398–3407 (2008).
  • Talbot GH, Thye D, Das A, Ge Y. Phase 2 study of ceftaroline versus standard therapy in the treatment of complicated skin and skin structure infections. Antimicrob. Agents Chemother.51(10), 3612–3616 (2007).
  • Ge Y, Floren L, Redman R et al. Single-dose pharmacokinetics (PK) of ceftaroline (PPI-0903) in healthy subjects. Presented at: 46th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, CA, USA, 27–30 September 2006 (Abstract A-1936).
  • Jacqueline C, Caillon J, Miegeville A. Penetration of ceftaroline (PPI-0903), a new cephalosporin, into lung tissues: measurement of plasma and lung tissue concentrations after a short IV infusion in the rabbit. Presented at: 46th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, CA, USA, 27–30 September 2006 (Abstract A-1938).
  • Anderson SD, Gums JG. Ceftobiprole: an extended-spectrum anti-methicillin resistant Staphylococcus aureus cephalosporin. Ann. Pharmacother.42, 806–816 (2008).
  • Fritsche TR, Sader HS, Jones RN. Antimicrobial activity of ceftobiprole, a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, tested against contemporary pathogens: results from the SENTRY antimicrobial surveillance program (2005–2006). Diagn. Microbiol. Infect. Dis.61, 86–95 (2008).
  • Hebeisen P, Heinze-Krauss I, Angehrn P, Hohl P, Page MG, Then RL. In vitro and in vivo properties of Ro-63–9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob. Agents Chemother.45(3), 825–836 (2001).
  • Queenan AM, Shang W, Kania M. Interactions of ceftobiprole with β-lactamases from molecular classes A to D. Antimicrob. Agents Chemother.51(9), 3089–3095 (2007).
  • Livermore DM, Hope R, Brick G et al. Non-susceptibility trends among Enterobacteriaceae from bacteraemias in the UK and Ireland, 2001–2006. J. Antimicrob. Chemother.62, ii41–ii51 (2008).
  • Livermore DM, Hope R, Brick G, Lillie M, Reynolds R; BSAC Working Parties on Resistance Surveillance. Non-susceptibility trends among Pseudomonas aeruginosa and other non-fermentative Gram-negative bacteria from bacteraemias in the UK and Ireland, 2001–2006. J. Antimicrob. Chemother.62, ii55–ii63 (2008).
  • Murthy B, Schmitt-Hoffmann A. Pharmacokinetics and pharmacodynamics of ceftobiprole, an anti-MRSA cephalosporin with broad-spectrum activity. Clin. Pharmacokinet.47(1), 21–33 (2008).
  • Lodise TP Jr, Pypstra R, Kahn JB et al. Probability of target attainment for ceftobiprole as derived from a population pharmacokinetic analysis of 150 subjects. Antimicrob. Agents Chemother.51(7), 2378–2387 (2007).
  • Noel GJ, Bush K, Bagchi P, Ianus J, Strauss RS. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin. Infect. Dis.46, 647–655 (2008).
  • Noel GJ, Strauss RS, Amsler K, Heep M, Pypstra R, Solomkin JS. Results of a double-blind, randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by Gram-positive bacteria. Antimicrob. Agents Chemother.52, 37–44 (2008).
  • Schneider P, Hawser S, Islam K. Iclaprim, a novel diaminopyrimidine with potente activity on trimethoprim sensitive and resistant bacteria. Bioorg. Med. Chem. Lett.13, 4217–4221 (2003).
  • Hawser S, Lociuro S, Islam K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol.71, 941–948 (2006).
  • Laue H, Weiss L, Bernardi A, Hawser S, Lociuro S, Islam K. In vitro activity of the novel diaminopyrimidine, iclaprim, in combination with folate inhibitors and other antimicrobials with different mechanisms of action. J. Antimicrob. Chemother.60, 1391–1394 (2007).
  • Jones RN, Fritsche TR, Hawser S et al.In vitro activityof iclaprim, a novel diaminopyrimidine, tested against β-hemolytic streptococci from the USA and Europe: results from the International Study of Iclaprim Susceptibility (ISIS) (abstract E-911). Presented at: 47th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, USA, 17–20 September 2007.
  • Hawser S, Lociuro S, Islam K. In vitro spectrum of activity of iclaprim against various Gram-positive and Gram-negative pathogens (poster CPLA-32). Presented at: The Third International Symposium on Resistant Gram-Positive Infections. Niagara-on-the-Lake, Ontario, Canada, 9–11 October 2006.
  • Jones RN, Fritsche TR, Islam K et al. Antimicrobial activity of a novel dihydrofolate reductase, iclaprim, tested against clinical strains of Enterobacteriaceae: results from the International Study of Iclaprim Susceptibility (ISIS). Presented at: 47th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, USA, 17–20 September 2007 (Abstract E-909).
  • Dellit TH, Owens RC, McGowan JE Jr et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis.44, 159–177 (2007).
  • Owens RC Jr, Ambrose PG. Antimicrobial stewardship and the role of pharmacokinetics–pharmacodynamics in the modern antibiotic era. Diagn. Microbiol. Infect. Dis.57, 77S–83S (2007).
  • Lodise TP, Lomaestro BM, Drusano GL. Practical application of pharmacodynamic principles to optimize therapy and treat resistant organisms: a focus on β-lactam antibiotics. In: Antimicrobial Resistance: Problem Pathogens and Clinical Countermeasures. Owens RC Jr, Lautenbach E (Eds). Informa Healthcare, NY, USA 317–335 (2008).
  • Jaruratanasirikul S, Sriwiriyajan S, Punyo J. Comparison of the pharmacodynamics of meropenem in patients with ventilator-associated pneumonia following administration by 3-hour infusion or bolus injection. Antimicrob. Agents Chemother.49, 1337–1339 (2005).
  • Lorente L, Lorenzo L, Martin MM, Jimenez A, Mora ML. Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to Gram negative bacilli. Ann. Pharmacother.40, 219–223 (2006).
  • Grant EM, Kuti JL, Nicolau DP, Nightingale C, Quintiliani R. Clinical efficacy and pharmacoeconomics of a continuous-infusion piperacillin–tazobactam program in a large community teaching hospital. Pharmacotherapy22, 471–483 (2002).
  • Lau W, Mercer D, Itani K et al. A randomized, open-label, comparative study of piperacillin/tazobactam administered by continuous infusion vs. intermittent infusion for the treatment of hospitalized patients with complicated intra-abdominal infection. Antimicrob. Agents Chemother.50, 3556–3561 (2006).
  • Lodise TP Jr, Lomaestro B, Drusano GL. Piperacillin–tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin. Infect. Dis.44, 357–363 (2007).
  • Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin. Pharmacokinet.43, 925–942 (2004).
  • Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch. Intern. Med.166, 2138–2144 (2006).
  • Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob. Agents Chemother.52, 1330–1336 (2008).
  • Lodise TP, Graves J, Evans A et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob. Agents Chemother.52, 3315–3320 (2008).
  • American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med.171, 388–416 (2005).
  • Logman JF, Stephens J, Heeg B et al. Comparative effectiveness of antibiotics for the treatment of MRSA complicated skin and soft tissue infections. Curr. Med. Res. Opin.26, 1565–1578 (2010).
  • Sakoulas G, Eliopoulos GM, Fowler VG Jr et al. Reduced susceptibility of Staphylococcus aureus to vancomycin and platelet microbicidal protein correlates with defective autolysis and loss of accessory gene regulator (agr) function. Antimicrob. Agents Chemother.49, 2687–2692 (2005).
  • Eron LJ, Lipsky BA, Low DE, Nathwani D, Tice AD, Volturo GA; Expert panel on managing skin and soft tissue infections. Managing skin and soft tissue infections: expert panel recommendations on key decision points. J. Antimicrob. Chemother.52, i3–i17 (2003).
  • Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest115(2), 462–474 (1999).
  • Boucher HW, Talbot GH, Bradley JS et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis.48, 1–12 (2009).
  • Hidron AI, Kourbatova EV, Halvosa JS et al. Risk factors for colonization with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to an urban hospital: emergence of community-associated MRSA nasal carriage. Clin. Infect. Dis.41, 159–166 (2005).
  • Como-Sabetti KJ, Harriman KH, Fridkin SK, Jawahir SL, Lynfield R. Risk factors for community-associated Staphylococcus aureus infections: results from parallel studies including methicillin-resistant and methicillin-sensitive S. aureus compared to uninfected controls. Epidemiol. Infect.1, 1–11 (2010).
  • Davis SL, Perri MB, Donabedian SM et al. Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection. J. Clin. Microbiol.45, 1705–1711 (2007).
  • Böcher S, Gervelmeyer DL, Monnet J, Mølbak R, Skov L. Methicillin-resistant Staphylococcus aureus: risk factors associated with community-onset infections in Denmark. Clin. Microbiol. Infect.14, 942–948 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.