205
Views
38
CrossRef citations to date
0
Altmetric
Review

Will new antimicrobials overcome resistance among Gram-negatives?

, , , &
Pages 909-922 | Published online: 10 Jan 2014

References

  • Kallen AJ, Srinivasan A. Current epidemiology of multidrug-resistant Gram-negative bacilli in the United States. Infect. Control Hosp. Epidemiol.31(Suppl. 1), S51–S54 (2010).
  • Souli M, Galani I, Giamarellou H. Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Euro Surveill.13, pii: 19045 (2008).
  • Rodloff AC, Leclercq R, Debbia EA, Canton R, Oppenheim BA, Dowzicky MJ. Comparative analysis of antimicrobial susceptibility among organisms from France, Germany, Italy, Spain and the UK as part of the tigecycline evaluation and surveillance trial. Clin. Microbiol. Infect.14(4), 307–314 (2008).
  • Maragakis LL. Recognition and prevention of multidrug-resistant Gram-negative bacteria in the intensive care unit. Crit. Care Med, 38(Suppl. 8), S345–S351 (2010).
  • Peterson LR. Bad bugs, no drugs: no ESCAPE revisited. Clin. Infect. Dis.49(6), 992–993 (2009).
  • Giske CG, Monnet DL, Cars O, Carmeli Y. Clinical and economic impact of common multidrug-resistant Gram-negative bacilli. Antimicrob. Agents Chemother.52(3), 813–821 (2008).
  • Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J. Antimicrob. Chemother.66(1), 1–14 (2010).
  • Koomanachai P, Bulik CC, Kuti JL, Nicolau DP. Pharmacodynamic modeling of intravenous antibiotics against Gram-negative bacteria collected in the United States. Clin. Ther.32(4), 766–779 (2010).
  • Spellberg B, Guidos R, Gilbert D et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis.46(2), 155–164 (2008).
  • Infectious Diseases Society of America. The 10 × ‘20 Initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin. Infect. Dis.50(8), 1081–1083 (2010).
  • Schaack S, Gilbert C, Feschotte C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol. Evol.25(9), 537–546 (2010).
  • Munoz-Price LS, Quinn JP. The spread of Klebsiella pneumoniae carbapenemases: a tale of strains, plasmids, and transposons. Clin. Infect. Dis.49(11), 1739–1741 (2009).
  • Brakhage AA, Al-Abdallah Q, Tüncher A, Spröte P. Evolution of β-lactam biosynthesis genes and recruitment of trans-acting factors. Phytochemistry66(11), 1200–1210 (2005).
  • Rawat D, Nair D. Extended-spectrum β-lactamases in Gram negative bacteria. J. Glob Infect. Dis.2(3), 263–274 (2010).
  • Walsh TR. Emerging carbapenemases: a global perspective. Int. J. Antimicrob. Agents.36(Suppl. 3), S8–S14 (2010).
  • Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum β-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J. Antimicrob. Chemother.60(5), 913–920 (2007).
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother.39(6), 1211–1233 (1995).
  • Ambler RP. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci.289(1036), 321–331 (1980).
  • Thomson KS. Extended-spectrum-β-lactamase, AmpC, and carbapenemase issues. J. Clin. Microbiol.48(4), 1019–1025 (2010).
  • Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis.9(4), 228–236 (2009).
  • Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis.10(9), 597–602 (2010).
  • Nordmann P, Poirel L, Toleman MA et al. Does broad-spectrum β-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? J. Antimicrob. Chemother.66(4), 689–692 (2011).
  • Falagas ME, Rafailidis PI, Matthaiou DK. Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resist. Update13(4–5), 132–138 (2010).
  • Munoz-Price LS, Weinstein RA. Acinetobacter infection. N. Engl. J. Med.358(12), 1271–1281 (2008).
  • Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev.22(4), 582–610 (2009).
  • Poulakou G, Kontopidou FV, Paramythiotou E et al. Tigecycline in the treatment of infections from multi-drug resistant Gram-negative pathogens. J. Infect.58(4), 273–284 (2009).
  • Keeney D, Ruzin A, Bradford PA. RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb. Drug Resist.13(1), 1–6 (2007).
  • Drlica K, Malik M. Fluoroquinolones: action and resistance. Curr. Top. Med. Chem.3(3), 249–282 (2003).
  • Shakil S, Khan R, Zarrilli R, Khan AU. Aminoglycosides versus bacteria – a description of the action, resistance mechanism, and nosocomial battleground. J. Biomed. Sci.15(1), 5–14 (2008).
  • Dozzo P, Moser HE. New aminoglycoside antibiotics. Expert Opin. Ther. Pat.20(10), 1321–1341 (2008).
  • Eschenburg S, Priestman M, Schonbrunn E. Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamineenolpyruvyltransferase (MurA) is essential for product release. J. Biol. Chem.280(5), 3757–3763 (2005).
  • Kobayashi S, Kuzuyama T, Seto H. Characterization of the fomA and fomB gene products from Streptomyces wedmorensis, which confer fosfomycin resistance on Escherichia coli. Antimicrob. Agents Chemother.44(3), 647–650 (2010).
  • Bassetti M, Righi E, Viscoli C. Novel β-lactam antibiotics and inhibitor combinations. Expert Opin. Investig. Drugs.17(3), 285–296 (2008).
  • Noel GJ, Bush K, Bagchi P, Ianus J, Strauss RS. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin. Infect. Dis.46(5), 647–655 (2008).
  • El Solh A. Ceftobiprole: a new broad spectrum cephalosporin. Expert Opin. Pharmacother.10(10), 1675–1686 (2009).
  • Nannini EC, Stryjewski ME, Corey GR. Ceftaroline for complicated skin and skin-structure infections. Expert Opin. Pharmacother.11(7), 1197–1206 (2010).
  • Vidaillac C, Leonard SN, Sader HS, Jones RN, Rybak MJ. In vitro activity of ceftaroline alone and in combination against clinical isolates of resistant Gram-negative pathogens, including β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother.53(6), 2360–2366 (2009).
  • Corey GR, Wilcox M, Talbot GH et al. Integrated analysis of CANVAS 1 and 2: phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin. Infect. Dis.51(6), 641–650 (2010).
  • Mushtaq S, Warner M, Ge Y, Kaniga K, Livermore DM. In vitro activity of ceftaroline (PPI-0903M, T-91825) against bacteria with defined resistance mechanisms and phenotypes. J. Antimicrob. Chemother.60(2), 300–311 (2007).
  • Karlowsky JA, Adam HJ, Decorby MR, Lagacé-Wiens PR, Hoban DJ, Zhanel GG. In vitro Activity of ceftaroline against Gram-positive and Gram-negative pathogens isolated from patients in Canadian hospitals in 2009. Antimicrob. Agents Chemother.55(6), 2837–2846 (2011).
  • Moya B, Zamorano L, Juan C, Pérez JL, Ge Y, Oliver A. Activity of a new cephalosporin, CXA-101 (FR264205), against β-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients. Antimicrob. Agents Chemother.54(3), 1213–1217 (2010).
  • Brown NP, Pillar CM, Sahm DF, Alluru V, Grover P, Ge Y. Activity profile of CXA-101 and CXA-101/tazobactam against target Gram-positive and Gram-negative pathogens. Presented at: 49th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, CA, USA, 12–15 September 2009.
  • Ge Y, Whitehouse MJ, Friedland I, Talbot GH. Pharmacokinetics and safety of CXA-101, a new antipseudomonal cephalosporin, in healthy adult male and female subjects receiving single- and multiple-dose intravenous infusions. Antimicrob. Agents Chemother.54(8), 3427–3431 (2010).
  • Titelman E, Karlsson IM, Ge Y, Giske CG. In vitro activity of CXA-101 plus tazobactam (CXA-201) against CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis.70(1), 137–141 (2011).
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement (June 2010 Update) M100-S20-U. CLSI, Wayne, PA, USA (2010).
  • Bassetti M, Nicolini L, Esposito S, Righi E, Viscoli C. Current status of newer carbapenems. Curr. Med. Chem.16(5), 564–575 (2009).
  • Chahine EB, Ferrill MJ, Poulakos MN. Doripenem: a new carbapenem antibiotic. Am. J. Health Syst. Pharm.67(23), 2015–2024 (2010).
  • Betriu C, Gomez M, Lopez-Fabal F, Culebras E, Rodríguez-Avial I, Picazo JJ. Activity of doripenem against extended-spectrum β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa isolates. Eur. J. Clin. Microbiol. Infect. Dis.29(9), 1179–1181 (2010).
  • Queenan AM, Shang W, Flamm R, Bush K. Hydrolysis and inhibition profiles of β-lactamases from molecular classes A to D with doripenem, imipenem, and meropenem. Antimicrob. Agents Chemother.54(1), 565–569 (2010).
  • Chastre J, Wunderink R, Prokocimer P, Lee M, Kaniga K, Friedland I. Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: a multicenter, randomized study. Crit. Care Med.36(4), 1089–1096 (2008).
  • Jia B, Lu P, Huang W et al. A multicenter, randomized controlled clinical study on biapenem and imipenem/cilastatin injection in the treatment of respiratory and urinary tract infections. Chemotherapy56(4), 285–290 (2010).
  • Gomi K, Fujimura S, Fuse K et al. Antibacterial activity of carbapenems against clinical isolates of respiratory bacterial pathogens in the northeastern region of Japan in 2007. J. Infect. Chemother.17(2), 200–206 (2011).
  • Fukushima Y, Fukushima F, Kamiya K et al. Relation between the antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa from respiratory specimens and antimicrobial use density (AUD) from 2005 through 2008. Intern. Med.49(14), 1333–1340 (2010).
  • Fujimura S, Nakano Y, Sato T, Shirahata K, Watanabe A. Relationship between the usage of carbapenem antibiotics and the incidence of imipenem-resistant Pseudomonas aeruginosa. J. Infect. Chemother.13(3), 147–150 (2007).
  • Koga T, Masuda N, Kakuta M, Namba E, Sugihara C, Fukuoka T. Potent In vitro activity of tomopenem (CS-023) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob. Agents Chemother.52(8), 2849–2854 (2008).
  • Livermore DM, Mushtaq S, Warner M. Activity of the anti-MRSA carbapenem razupenem (PTZ601) against Enterobacteriaceae with defined resistance mechanisms. J. Antimicrob. Chemother.64(2), 330–335 (2009).
  • Goa KL, Noble S. Panipenem/betamipron. Drugs63(9), 913–925, discussion 926 (2003).
  • Yoshida S, Koga T, Kakuta M et al.In-vitro activity of panipenem against clinical isolates in 2006. Jpn J. Antibiot.61(1), 1–17 (2008).
  • Morrissey I, Biek D, Janes R. ME1036, a novel carbapenem, with enhanced activity against clinical isolates causing bacteraemic community-acquired pneumonia. J. Antimicrob. Chemother.64(1), 209–210 (2009).
  • Russo TA, Page MG, Beanan JM et al.In vivo and in vitro activity of the siderophore monosulfactam BAL30072 against Acinetobacter baumannii. J. Antimicrob. Chemother.66(4), 867–873 (2011).
  • Page MG, Dantier C, Desarbre E. In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant Gram-negative bacilli. Antimicrob. Agents Chemother.54(6), 2291–2302 (2010).
  • Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int. J. Med. Microbiol.300(6), 371–379 (2010).
  • Weiss WJ, Petersen PJ, Murphy TM et al.In vitro and in vivo activities of novel 6-methylidene penems as β-lactamase inhibitors. Antimicrob. Agents Chemother.48(12), 4589–4596 (2004).
  • Bebrone C, Lassaux P, Vercheval L et al. Current challenges in antimicrobial chemotherapy: focus on β-lactamase inhibition. Drugs70(6), 651–679 (2010).
  • Petersen PJ, Jones CH, Venkatesan AM, Bradford PA. Efficacy of piperacillin combined with the penem β-lactamase inhibitor BLI-489 in murine models of systemic infection. Antimicrob. Agents Chemother.53(4), 1698–1700 (2009).
  • Shahid M, Sobia F, Singh A et al. β-lactams and β-lactamase-inhibitors in current- or potential-clinical practice: a comprehensive update. Crit. Rev. Microbiol.35(2), 81–108 (2009).
  • Ruzin A, Petersen PJ, Jones CH. Resistance development profiling of piperacillin in combination with the novel {β}-lactamase inhibitor BLI-489. J. Antimicrob. Chemother.65(2), 252–257 (2010).
  • Paukner S, Hesse L, Prezelj A, Solmajer T, Urleb U. In vitro activity of LK-157, a novel tricyclic carbapenem as broad-spectrum {β}-lactamase inhibitor. Antimicrob. Agents Chemother.53(2), 505–511 (2009).
  • Jamieson CE, Lambert PA, Simpson IN. In vitro activities of novel oxapenems, alone and in combination with ceftazidime, against Gram-positive and Gram-negative organisms. Antimicrob. Agents Chemother.47(8), 2615–2618 (2003).
  • Bowker KE, Noel AR, Walsh TR, Rogers CA, MacGowan AP. Pharmacodynamics of ceftazidime plus the serine β-lactamase inhibitor AM-112 against Escherichia coli containing TEM-1 and CTX-M-1 β-lactamases. Antimicrob. Agents Chemother.48(11), 4482–4484 (2004).
  • Lagacé-Wiens PR, Tailor F, Simner P et al. Activity of NXL104 in combination with β-lactams against genetically characterized Escherichia coli and Klebsiella pneumoniae isolates producing class A extended-spectrum β-lactamases and class C β-lactamases. Antimicrob. Agents Chemother.55(5), 2434–2437 (2011).
  • Curcio D. Activity of a novel combination against multidrug-resistant nonfermenters: ceftazidime plus NXL104. Expert Rev. Anti Infect. Ther.9(2), 173–176 (2011).
  • Mushtaq S, Warner M, Williams G, Critchley I, Livermore DM. Activity of chequerboard combinations of ceftaroline and NXL104 versus β-lactamase-producing Enterobacteriaceae. J. Antimicrob. Chemother.65(7), 1428–1432 (2010).
  • Melchers R, Mavridou E, Van Mil A, Motyl MR, Mouton JW. In vitro activity of imipenem alone and in combination with MK-7655: a new β-lactamase inhibitor. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Mavridou E, Melchers R, Van Mil A, Mangin E, Mouton JW. Pharmacodynamics of imipenem in combination with MK-7655, a β-lactamase inhibitor, in the neutropenic mouse thigh model. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Hirsch EB, Ledesma KR, Chang KT, Motyl MR, Tam VH. In vitro activity of MK-7655 in combination with imipenem (IPM) against carbapenem resistant Gram-negative bacteria. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Maltezou HC. Metallo-β-lactamases in Gram-negative bacteria: introducing the era of pan-resistance? Int. J. Antimicrob. Agents.33(5), 405, e1–e7 (2009).
  • Livermore DM, Mushtaq S, Warner M. Activity of BAL30376 (monobactam BAL19764 + BAL29880 + clavulanate) versus Gram-negative bacteria with characterized resistance mechanisms. J. Antimicrob. Chemother.65(11), 2382–2395 (2010).
  • Page MG, Dantier C, Desarbre E, Gaucher B, Gebhardt K, Schmitt-Hoffmann A. In vitro and in vivo properties of BAL30376, a β-lactam and dual β-lactamase inhibitor combination with enhanced activity against Gram-negative bacilli that express multiple β-lactamases. Antimicrob. Agents Chemother.55(4), 1510–1519 (2011).
  • Ishii Y, Eto M, Mano Y, Tateda K, Yamaguchi K. In vitro potentiation of carbapenems with ME1071, a novel metallo-β-lactamase inhibitor, against metallo-β-lactamase- producing Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother.54(9), 3625–3629 (2010).
  • Sutcliffe J, Ronn M, Leighton A, Sprenger C. Phase 1 single ascending dose study of a broad-spectrum fluorocycline, TP-434. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Talbot GH. The antibiotic development pipeline for multidrug-resistant Gram-negative bacilli: current and future landscapes. Infect. Control Hosp. Epidemiol.31(Suppl. 1), S55–S58 (2010).
  • Livermore DM, Mushtaq S, Warner M et al. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J. Antimicrob. Chemother.66(1), 48–53 (2011).
  • Landman D, Kelly P, Bäcker M et al. Antimicrobial activity of a novel aminoglycoside, ACHN-490, against Acinetobacter baumannii and Pseudomonas aeruginosa from New York City. J. Antimicrob. Chemother.66(2), 332–334 (2011).
  • Landman D, Babu E, Shah N et al. Activity of a novel aminoglycoside, ACHN-490, against clinical isolates of Escherichia coli and Klebsiella pneumoniae from New York City. J. Antimicrob. Chemother.65(10), 2123–2127 (2011).
  • Sader HS, Rhomberg PR, Jones RN. Antimicrobial activity of a novel polymyxin analog (CB-182,804) tested against clinical strains of Gram-negative bacilli, including colistin-resistant organisms. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Opperman TJ, Houseweart C, Williams JD, Peet NP, Moir DT, Bowlin TL. The mechanism of antibacterial action of novel bis-indole antibiotics. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Butler MM, Williams JD, Peet NP et al. Comparative in vitro activity profiles of novel bis-indole antibacterials against Gram-positive and Gram-negative clinical isolates. Antimicrob. Agents Chemother.54(9), 3974–3977 (2010).
  • Hernandez V, Akama T, Alley M et al. Discovery and mechanism of action of AN3365: a novel boron containing antibacterial agent in clinical development for Gram-negative infections. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Biedenbach DJ, Mendes RE, Alley MRK, Sader HS, Jones R. Potency and spectrum of activity of AN3365, a novel boron-containing protein synthesis inhibitor, tested against non-fermentative Gram-negative bacilli. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Bouchillon S, Hoban D, Hackel M, Butler D, Demarsch P, Alley D. In vitro activities of AN3365: a novel boron containing protein synthesis inhibitor and other antimicrobial agents against anaerobes and Neisseria gonorrhoeae. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Freund YR, Liu L, Alley MRK et al. Murine pharmacokinetics and in vivo Gram-negative activity of AN3365: a novel boron-containing protein synthesis inhibitor. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Mansoor UF, Vitharana D. Reddy PA et al. Design and synthesis of potent Gram-negative specific LpxC inhibitors. Bioorg Med. Chem. Lett.21(4), 1155–1161 (2011).
  • Ippolito J, Wang D, Chen S et al. Novel antibiotic classes to treat Gram-negative infections. Presented at: 49th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, CA, USA, 12–15 September 2009.
  • Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs? PloS Pathog.6(10), e1001067 (2010).
  • Vila-Farres X, Garcia-De La Maria C, Giralt E, Vila J. In vitro activity of mastoparan against colistin-susceptible and resistant Acinetobacter baumannii. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Baer M, Sawa T, Flynn P et al. An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect. Immun.77(3), 1083–1090 (2009).
  • Page MG, Heim J. Prospects for the next anti-Pseudomonas drug. Curr. Opin. Pharmacol.9(5), 558–565 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.