197
Views
29
CrossRef citations to date
0
Altmetric
Review

Therapeutic modulation of miRNA for the treatment of proinflammatory lung diseases

, , , &
Pages 359-368 | Published online: 10 Jan 2014

References

  • Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature466(7308), 835–840 (2010).
  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature432(7014), 231–235 (2004).
  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev.18(24), 3016–3027 (2004).
  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science303(5654), 95–98 (2004).
  • Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol.6(5), 376–385 (2005).
  • Weinmann L, Hock J, Ivacevic T et al. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell136(3), 496–507 (2009).
  • Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc. Natl Acad. Sci. USA104(23), 9667–9672 (2007).
  • Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell128(6), 1105–1118 (2007).
  • Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. Nature460(7254), 529–533 (2009).
  • Leung A, Calabrese JM, Sharp PA. Quantitative analysis of Argonuate protein reveals microRNA-dependent localization to stress granules. Proc. Natl Acad. Sci. USA103(48), 18125–18130 (2006).
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity34(5), 637–650 (2011).
  • Martin TR, Frevert CW. Innate immunity in the lungs. Proc. Am. Thorac. Soc.2(5), 403–411 (2005).
  • Greene CM, McElvaney NG. Toll-like receptor expression and function in airway epithelial cells. Arch. Immunol. Ther. Exp. (Warsz)53(5), 418–427 (2005).
  • Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science303(5654), 83–86 (2004).
  • Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell136(1), 26–36 (2009).
  • Xiao C, Calado DP, Galler G et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell131(1), 146–159 (2007).
  • Garzon R, Croce CM. MicroRNAs in normal and malignant hematopoiesis. Curr. Opin. Hematol.15(4), 352–358 (2008).
  • Vigorito E, Perks KL, Abreu-Goodger C et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity27(6), 847–859 (2007).
  • Wang P, Hou J, Lin L et al. Inducible microRNA-155 feedback promotes Type 1 IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J. Immunol.185(10), 6226–6233 (2010).
  • O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl Acad. Sci. USA106(17), 7113–7118 (2009).
  • Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J. Immunol.182(5), 2578–2582 (2009).
  • Tang B, Xiao B, Liu Z et al. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett.584(8), 1481–1486 (2010).
  • Huang RS, Hu GQ, Lin B, Lin ZY, Sun CC. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J. Investig. Med.58(8), 961–967 (2010).
  • Tili E, Michaille JJ, Cimino A et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol.179(8), 5082–5089 (2007).
  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA104(5), 1604–1609 (2007).
  • Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA103(33), 12481–12486 (2006).
  • Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA. Rapid changes in microRNA-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells. J. Immunol.180(8), 5689–5698 (2008).
  • Chen XM, Splinter PL, O’Hara SP, LaRusso NF. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J. Biol. Chem.282(39), 28929–28938 (2007).
  • Johnnidis JB, Harris MH, Wheeler RT et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature451(7182), 1125–1129 (2008).
  • Androulidaki A, Iliopoulos D, Arranz A et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity31(2), 220–231 (2009).
  • Hou J, Wang P, Lin L et al. MicroRNA-146a feedback inhibits RIG-I-dependent Type 1 IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J. Immunol.183(3), 2150–2158 (2009).
  • Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG. MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation. Nat. Immunol.11(9), 799–805 (2010).
  • Chen R, Alvero AB, Silasi DA et al. Regulation of IKKβ by miR-199a affects NF-κB activity in ovarian cancer cells. Oncogene27(34), 4712–4723 (2008).
  • Bazzoni F, Rossato M, Fabbri M et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl Acad. Sci. USA106(13), 5282–5287 (2009).
  • Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell139(4), 693–706 (2009).
  • Sharma A, Kumar M, Aich J et al. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc. Natl Acad. Sci. USA106(14), 5761–5766 (2009).
  • Ma F, Liu X, Li D et al. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J. Immunol.184(11), 6053–6059 (2010).
  • Greene CM, Branagan P, McElvaney NG. Toll-like receptors as therapeutic targets in cystic fibrosis. Expert Opin. Ther. Targets12(12), 1481–1495 (2008).
  • Greene CM, McElvaney NG. Proteases and antiproteases in chronic neutrophilic lung disease – relevance to drug discovery. Br. J. Pharmacol.158(4), 1048–1058 (2009).
  • Greene CM. How can we target pulmonary inflammation in cystic fibrosis? Open. Respir. Med. J.4, 18–19 (2010).
  • Oglesby IK, McElvaney NG, Greene CM. MicroRNAs in inflammatory lung disease – master regulators or target practice? Respir. Res.11, 148 (2010).
  • Oglesby IK, Bray IM, Chotirmall SH et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J. Immunol.184(4), 1702–1709 (2010).
  • Bhattacharyya S, Balakathiresan NS, Dalgard C et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J. Biol. Chem.286(13), 11604–11615 (2011).
  • Finn PW, Bigby TD. Innate immunity and asthma. Proc. Am. Thorac. Soc.6(3), 260–265 (2009).
  • Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J. Immunol.182(8), 4994–5002 (2009).
  • Lu TX, Hartner J, Lim EJ et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-{γ} pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J. Immunol.187(6), 3362–3373 (2011).
  • Collison A, Herbert C, Siegle JS, Mattes J, Foster PS, Kumar RK. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm. Med.23(11), 29–34 (2011).
  • Kumar M, Ahmad T, Sharma A et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J. Allergy Clin. Immunol.128(5), 1077–1085; e10 (2011).
  • Liu X, Nelson A, Wang X et al. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochem. Biophys. Res. Commun.380(1), 177–182 (2009).
  • Hutvagner G, Simard MJ, Mello CC, Zamore PD. Sequence-specific inhibition of small RNA function. PLoS Biol.2(4), E98 (2004).
  • Garofalo M, Croce CM. microRNAs: master regulators as potential therapeutics in cancer. Annu. Rev. Pharmacol. Toxicol.51, 25–43 (2011).
  • Elmen J, Lindow M, Schutz S et al. LNA-mediated microRNA silencing in non-human primates. Nature452(7189), 896–899 (2008).
  • Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature438(7068), 685–689 (2005).
  • Henry JC, Azevedo-Pouly AC, Schmittgen TD. microRNA replacement therapy for cancer. Pharm. Res.28(12), 3030-42 (2011).
  • Lam JK, Liang W, Chan HK. Pulmonary delivery of therapeutic siRNA. Adv. Drug Deliv. Rev. doi:10.1016/j.addr.2011.02.006 (2011) (Epub ahead of print).
  • Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov.9(10), 775–789 (2010).
  • Castanotto D, Sakurai K, Lingeman R et al. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res.35(15), 5154–5164 (2007).
  • Grimm D, Streetz KL, Jopling CL et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature441(7092), 537–541 (2006).
  • Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA102(37), 13212–13217 (2005).
  • Chung KH, Hart CC, Al-Bassam S et al. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res.34(7), e53 (2006).
  • Chen S, Ni M, Yu B, Lv T, Lu M, Gong F. Construction and identification of a human liver specific microRNA eukaryotic expression vector. Cell Mol. Immunol.4(6), 473–477 (2007).
  • Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res.71(15), 5214–5224 (2011).
  • Lanford RE, Hildebrandt-Eriksen ES, Petri A et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science327(5962), 198–201 (2010).
  • Bala S, Marcos M, Szabo G. Emerging role of microRNAs in liver diseases. World J. Gastroenterol.15(45), 5633–5640 (2009).
  • Liu XQ, Song WJ, Sun TM, Zhang PZ, Wang J. Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles. Mol. Pharm.8(1), 250–259 (2011).
  • Wu SY, McMillan NA. Lipidic systems for in vivo siRNA delivery. AAPS J.11(4), 639–652 (2009).
  • Brower V. RNA interference advances to early-stage clinical trials. J. Natl Cancer Inst.102(19), 1459–1461 (2010).
  • Nielsen EJ, Nielsen JM, Becker D et al. Pulmonary gene silencing in transgenic EGFP mice using aerosolised chitosan/siRNA nanoparticles. Pharm. Res.27(12), 2520–2527 (2010).
  • Moschos SA, Jones SW, Perry MM et al. Lung delivery studies using siRNA conjugated to TAT(48–60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug. Chem.18(5), 1450–1459 (2007).
  • Moschos SA, Williams AE, Lindsay MA. Cell-penetrating-peptide-mediated siRNA lung delivery. Biochem. Soc. Trans.35(Pt 4), 807–810 (2007).
  • Oh SY, Ju Y, Kim S, Park H. PNA-based antisense oligonucleotides for micrornas inhibition in the absence of a transfection reagent. Oligonucleotides20(5), 225–230 (2010).
  • Baker M. RNA interference: homing in on delivery. Nature464(7292), 1225–1228 (2010).
  • Starczynowski DT, Kuchenbauer F, Argiropoulos B et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat. Med.16(1), 49–58 (2010).
  • Ceppi M, Pereira PM, Dunand-Sauthier I et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl Acad. Sci. USA106(8), 2735–2740 (2009).
  • Tan Z, Randall G, Fan J et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am. J. Hum Genet.81(4), 829–834 (2007).
  • Sheedy FJ, Palsson-McDermott E, Hennessy EJ et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol.11(2), 141–147 (2010).
  • Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc. Natl Acad. Sci. USA106(44), 18704–18709 (2009).
  • Garbacki N, Di Valentin E, Huynh-Thu VA et al. MicroRNAs profilling in murine models of acute and chronic asthma: a relationship with mRNA targets. PLoS One28(6), e16509 (2011).
  • Wang H, Garzon R, Sun H et al. NF-κB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell14(5), 369–381 (2008).
  • Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M. Down-regulation of miR-133a contributes to up-regulation of Rhoa in bronchial smooth muscle cells. Am. J. Respir. Crit. Care Med.180(8), 713–719 (2009).
  • Kuhn AR, Schlauch K, Lao R, Halayko AJ, Gerthoffer WT, Singer CA. MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype. Am. J. Respir. Cell Mol. Biol.42(4), 506–513 (2010).
  • Mohamed JS, Lopez MA, Boriek AM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J. Biol. Chem.285(38), 29336–29347 (2010).
  • Li YJ, Zhang YX, Wang PY et al. Regression of A549 lung cancer tumors by anti-miR-150 vector. Oncol. Rep.27(1), 129–134 (2011).
  • Liang S, He L, Zhao X et al. MicroRNA let-7f inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer. PLoS One6(4), e18409 (2011).
  • Yan D, Ng WL, Zhang X et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS One5(7), e11397 (2010).
  • Trang P, Medina PP, Wiggins JF et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene29(11), 1580–1587 (2010).
  • Kim SJ, Oh JS, Shin JY et al. Development of microRNA-145 for therapeutic application in breast cancer. J. Cont. Release (2011).
  • Borel F, van Logtenstein R, Koornneef A et al.In vivo knock-down of multidrug resistance transporters ABCC1 and ABCC2 by AAV-delivered shRNAs and by artificial miRNAs. J. RNAi Gene Silencing7, 434–442 (2011).
  • Montgomery RL, Hullinger TG, Semus HM et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation124(14), 1537–1547 (2011).
  • Ma L, Reinhardt F, Pan E et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol.28(4), 341–347 (2010).
  • Xu H, Liu YL, Yang YM, Dong XS. Knock-down of ubiquitin-specific protease 22 by micro-RNA interference inhibits colorectal cancer growth. Int. J. Colorectal. Dis.27(1), 21–30 (2011).
  • Hibbitt O, Agkatsev S, Owen C et al. RNAi-mediated knockdown of HMG CoA reductase enhances gene expression from physiologically regulated low-density lipoprotein receptor therapeutic vectors in vivo. Gene Ther. doi:10.1038/gt.2011.103 (2011) (Epub ahead of print).
  • Mao CP, He L, Tsai YC et al.In vivo microRNA-155 expression influences antigen-specific T cell-mediated immune responses generated by DNA vaccination. Cell Biosci.1(1), 3 (2011).
  • Takeshita F, Patrawala L, Osaki M et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol. Ther.18(1), 181–187 (2010).
  • Su J, Baigude H, McCarroll J, Rana TM. Silencing microRNA by interfering nanoparticles in mice. Nucleic Acids Res.39(6), e38 (2011).
  • Hwang do W, Son S, Jang J et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials32(21), 4968–4975 (2011).
  • Choi WY, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancing of nodal agonist and antagonist by miR-430. Science318(5848), 271–274 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.