133
Views
26
CrossRef citations to date
0
Altmetric
Review

Immunomodulation for gastrointestinal infections

, , &
Pages 391-400 | Published online: 10 Jan 2014

References

  • Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature474, 298–306 (2011).
  • Jarchum I, Pamer EG. Regulation of innate and adaptive immunity by the commensal microbiota. Curr. Opin. Immunol.23, 353–360 (2011).
  • Kunisawa J, Kurashima Y, Kiyono H. Gut-associated lymphoid tissues for the development of oral vaccines. Adv. Drug Deliv. Rev. doi:10.1016/j.addr.2011.07.003 (2011) (Epub ahead of print).
  • Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog.6, e1001067 (2010).
  • Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol.28, 243–273 (2010).
  • Kunisawa J, Nochi T, Kiyono H. Immunological commonalities and distinctions between airway and digestive immunity. Trends Immunol.29, 505–513 (2008).
  • Schulz O, Jaensson E, Persson EK et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med.206, 3101–3114 (2009).
  • Niess JH, Brand S, Gu X et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science307, 254–258 (2005).
  • Milling S, Yrlid UV. Cerovic V, Macpherson G. Subsets of migrating intestinal dendritic cells. Immunol. Rev.234, 259–267 (2001).
  • Suzuki K, Kawamoto S, Maruya M, Fagarasan S. GALT: organization and dynamics leading to IgA synthesis. Adv. Immunol.107, 153–185 (2010).
  • Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol.10, 159–169 (2010).
  • Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA105, 15064–15069 (2008).
  • Van Der Sluis M, De Koning BA, De Bruijn AC et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology131, 117–129 (2006).
  • Ramasundara M, Leach ST, Lemberg DA, Day AS. Defensins and inflammation: the role of defensins in inflammatory bowel disease. J. Gastroenterol. Hepatol.24, 202–208 (2009).
  • Wehkamp J, Koslowski M, Wang G, Stange EF. Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn’s disease. Mucosal. Immunol.1, S67–S74 (2008).
  • Suzuki K, Ha SA, Tsuji M, Fagarasan S. Intestinal IgA synthesis: a primitive form of adaptive immunity that regulates microbial communities in the gut. Semin. Immunol.19, 127–135 (2007).
  • Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl Acad. Sci. USA106, 19256–19261 (2009).
  • Hapfelmeier S, Lawson MA, Slack E et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science328, 1705–1709 (2010).
  • Wei M, Shinkura R, Doi Y, Maruya M, Fagarasan S, Honjo T. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat. Immunol.12, 264–270 (2011).
  • Murthy AK, Dubose CN, Banas JA, Coalson JJ, Arulanandam BP. Contribution of polymeric immunoglobulin receptor to regulation of intestinal inflammation in dextran sulfate sodium-induced colitis. J. Gastroenterol. Hepatol.21, 1372–1380 (2006).
  • Peterson DA, Mcnulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe2, 328–339 (2007).
  • Mcgeachy MJ, Bak-Jensen KS, Chen Y et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol.8, 1390–1397 (2007).
  • Niess JH, Leithauser F, Adler G, Reimann J. Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. J. Immunol.180, 559–568 (2008).
  • Ivanov II, Atarashi K, Manel N et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell139, 485–498 (2009).
  • Gaboriau-Routhiau V, Rakotobe S, Lecuyer E et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity31, 677–689 (2009).
  • Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu. Rev. Immunol.27, 485–517 (2009).
  • Aujla SJ, Chan YR, Zheng M et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med.14, 275–281 (2008).
  • Happel KI, Dubin PJ, Zheng M et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J. Exp. Med.202, 761–769 (2005).
  • Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis.190, 624–631 (2004).
  • Werner JL, Gessner MA, Lilly LM et al. Neutrophils produce interleukin 17A (IL-17A) in a dectin-1- and IL-23-dependent manner during invasive fungal infection. Infect. Immun.79, 3966–3977 (2011).
  • Ismail AS, Severson KM, Vaishnava S et al. γδ intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl Acad. Sci. USA108, 8743–8748 (2011).
  • Zheng Y, Valdez PA, Danilenko DM et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med.14, 282–289 (2008).
  • Sellge G, Magalhaes JG, Konradt C et al. Th17 cells are the dominant T cell subtype primed by Shigella flexneri mediating protective immunity. J. Immunol.184, 2076–2085 (2010).
  • Gorelik L, Flavell RA. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity12, 171–181 (2000).
  • Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell101, 455–458 (2000).
  • Liston A, Farr AG, Chen Z et al. Lack of FOXP3 function and expression in the thymic epithelium. J. Exp. Med.204, 475–480 (2007).
  • Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor FOXP3. Immunity22, 329–341 (2005).
  • Matharu KS, Mizoguchi E, Cotoner CA et al. Toll-like receptor 4-mediated regulation of spontaneous Helicobacter-dependent colitis in IL-10-deficient mice. Gastroenterology137, 1380–1390; e1–e3 (2009).
  • Cahill RJ, Foltz CJ, Fox JG, Dangler CA, Powrie F, Schauer DB. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect. Immun.65, 3126–3131 (1997).
  • Tsuji M, Komatsu N, Kawamoto S et al. Preferential generation of follicular B helper T cells from FOXP3+ T cells in gut Peyer’s patches. Science323, 1488–1492 (2009).
  • Feng T, Elson CO, Cong Y. Treg cell-IgA axis in maintenance of host immune homeostasis with microbiota. Int. Immunopharmacol.11, 589–592 (2010).
  • Chieppa M, Rescigno M, Huang AY, Germain RN. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med.203, 2841–2852 (2006).
  • Niess JH, Adler G. Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions. J. Immunol.184, 2026–2037 (2010).
  • Medina-Contreras O, Geem D, Laur O et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J. Clin. Invest.121(12), 4787–4795 (2011).
  • Feng T, Cong Y, Qin H, Benveniste EN, Elson CO. Generation of mucosal dendritic cells from bone marrow reveals a critical role of retinoic acid. J. Immunol.185, 5915–5925 (2010).
  • Mora JR, Iwata M, Eksteen B et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science314, 1157–1160 (2006).
  • Sun CM, Hall JA, Blank RB et al. Small intestine lamina propria dendritic cells promote de novo generation of FOXP3 T reg cells via retinoic acid. J. Exp. Med.204, 1775–1785 (2007).
  • Villablanca EJ, Wang S, De Calisto J et al. MyD88 and retinoic acid signaling pathways interact to modulate gastrointestinal activities of dendritic cells. Gastroenterology141, 176–185 (2011).
  • Agace WW, Persson EK. How vitamin A metabolizing dendritic cells are generated in the gut mucosa. Trends Immunol. doi:10.1016/j.it.2011.10.001 (2011) (Epub ahead of print).
  • Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. Retinoic acid imprints gut-homing specificity on T cells. Immunity21, 527–538 (2004).
  • Hammerschmidt SI, Friedrichsen M, Boelter J et al. Retinoic acid induces homing of protective T and B cells to the gut after subcutaneous immunization in mice. J. Clin. Invest.121, 3051–3061 (2011).
  • Ng SC, Kamm MA, Stagg AJ, Knight SC. Intestinal dendritic cells: their role in bacterial recognition, lymphocyte homing, and intestinal inflammation. Inflamm. Bowel Dis.16, 1787–1807 (2010).
  • Smythies LE, Sellers M, Clements RH et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest.115, 66–75 (2005).
  • Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol.8, 1086–1094 (2007).
  • Smythies LE, Shen R, Bimczok D et al. Inflammation anergy in human intestinal macrophages is due to Smad-induced IκBα expression and NF-κB inactivation. J. Biol. Chem.285, 19593–19604 (2010).
  • Perruche S, Zhang P, Liu Y, Saas P, Bluestone JA, Chen W. CD3-specific antibody-induced immune tolerance involves transforming growth factor-β from phagocytes digesting apoptotic T cells. Nat. Med.14, 528–535 (2008).
  • Pinto D, Gregorieff A, Begthel H, Clevers H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev.17, 1709–1713 (2003).
  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell118, 229–241 (2004).
  • Brandl K, Plitas G, Schnabl B, Dematteo RP, Pamer EG. MyD88-mediated signals induce the bactericidal lectin RegIII γ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med.204, 1891–1900 (2007).
  • Lebeis SL, Bommarius B, Parkos CA, Sherman MA, Kalman D. TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium. J. Immunol.179, 566–577 (2007).
  • Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature411, 599–603 (2001).
  • Maeda S, Hsu LC, Liu H et al. Nod2 mutation in Crohn’s disease potentiates NF-κB activity and IL-1β processing. Science307, 734–738 (2005).
  • Shang L, Fukata M, Thirunarayanan N et al. Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology135, 529–538 (2008).
  • He B, Xu W, Santini PA et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity26, 812–826 (2007).
  • Wells JM, Rossi O, Meijerink M, Van Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface. Proc. Natl Acad. Sci. USA108, 4607–4614 (2011).
  • Dignass AU, Podolsky DK. Cytokine modulation of intestinal epithelial cell restitution: central role of transforming growth factor β. Gastroenterology105, 1323–1332 (1993).
  • Caruso R, Sarra M, Stolfi C et al. Interleukin-25 inhibits interleukin-12 production and Th1 cell-driven inflammation in the gut. Gastroenterology136, 2270–2279 (2009).
  • Rescigno M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol.32, 256–264 (2011).
  • Wang B, Li J, Chen J, Huang Q, Li N. Effect of live Lactobacillus plantarum L2 on TNF-α-induced MCP-1 production in Caco-2 cells. Int. J. Food Microbiol.142, 237–241 (2010).
  • Fang HW, Fang SB, Chiang Chiau JS et al. Inhibitory effects of Lactobacillus casei subsp. rhamnosus on Salmonella lipopolysaccharide-induced inflammation and epithelial barrier dysfunction in a co-culture model using Caco-2/peripheral blood mononuclear cells. J. Med. Microbiol.59, 573–579 (2010).
  • Sibartie S, O’Hara AM, Ryan J et al. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria. BMC Immunol.10, 54 (2009).
  • Ito T, Carson WFT, Cavassani KA, Connett JM, Kunkel SL. CCR6 as a mediator of immunity in the lung and gut. Exp. Cell Res.317, 613–619 (2011).
  • Fink LN, Metzdorff SB, Zeuthen LH et al. Establishment of tolerance to commensal bacteria requires a complex microbiota and is accompanied by decreased intestinal chemokine expression. Am. J. Physiol. Gastrointest. Liver Physiol. doi:10.1152/ajpgi.00428.2010 (2011) (Epub ahead of print).
  • Round JL, Lee SM, Li J et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science332, 974–977 (2011).
  • Round JL, Mazmanian SK. Inducible FOXP3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA107, 12204–12209 (2010).
  • Mohamadzadeh M, Pfeiler EA, Brown JB et al. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc. Natl Acad. Sci. USA108, 4623–4630 (2011).
  • Grangette C, Nutten S, Palumbo E et al. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl Acad. Sci. USA102, 10321–10326 (2005).
  • Jones SE, Whitehead K, Saulnier D, Thomas CM, Versalovic J, Britton RA. Cyclopropane fatty acid synthase mutants of probiotic human-derived Lactobacillus reuteri are defective in TNF inhibition. Gut Microbes2, 69–79 (2011).
  • Putaala H, Barrangou R, Leyer GJ et al. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli. Benef. Microbes1, 283–295 (2010).
  • Bedoui S, Kupz A, Wijburg OL, Walduck AK, Rescigno M, Strugnell RA. Different bacterial pathogens, different strategies, yet the aim is the same: evasion of intestinal dendritic cell recognition. J. Immunol.184, 2237–2242 (2010).
  • Strober W. Adherent-invasive E. coli in Crohn disease: bacterial “agent provocateur”. J. Clin. Invest.121, 841–844 (2011).
  • Bari W, Song YJ, Yoon SS. Suppressed induction of proinflammatory cytokines by a unique metabolite produced by Vibrio cholerae O1 El Tor biotype in cultured host cells. Infect. Immun.79, 3149–3158 (2011).
  • Pradhan S, Baidya AK, Ghosh A, Paul K, Chowdhury R. The El Tor biotype of Vibrio cholerae exhibits a growth advantage in the stationary phase in mixed cultures with the classical biotype. J. Bacteriol.192, 955–963 (2010).
  • Nunes JS, Lawhon SD, Rossetti CA et al. Morphologic and cytokine profile characterization of Salmonella enterica serovar Typhimurium infection in calves with bovine leukocyte adhesion deficiency. Vet. Pathol.47, 322–333 (2010).
  • Songhet P, Barthel M, Rohn TA et al. IL-17A/F-signaling does not contribute to the initial phase of mucosal inflammation triggered by S. Typhimurium. PLoS One5, e13804 (2010).
  • Winter SE, Winter MG, Godinez I et al. A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella. PLoS Pathog.6, e1001060 (2010).
  • Tran QT, Gomez G, Khare S et al. The Salmonella enterica serotype Typhi Vi capsular antigen is expressed after the bacterium enters the ileal mucosa. Infect. Immun.78, 527–535 (2010).
  • Lapaque N, Hutchinson JL, Jones DC et al.Salmonella regulates polyubiquitination and surface expression of MHC class II antigens. Proc. Natl Acad. Sci. USA106, 14052–14057 (2009).
  • Chassaing B, Rolhion N, De Vallee A et al. Crohn disease-associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J. Clin. Invest.121, 966–975 (2011).
  • Barnich N, Carvalho FA, Glasser AL et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Invest.117, 1566–1574 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.