64
Views
11
CrossRef citations to date
0
Altmetric
Perspective

Could immunomodulation be used to prevent prion diseases?

&
Pages 307-317 | Published online: 10 Jan 2014

References

  • Collee JG, Bradley R. BSE: a decade on. Lancet349, 636–641 (1997).
  • Harman JL, Silva CJ. Bovine spongiform encephalopathy. J. Am. Vet. Med. Assoc.234(1), 59–72 (2009).
  • Mackay GA, Knight RS, Ironside JW. The molecular epidemiology of variant CJD. Int. J. Mol. Epidemiol. Genet.2(3), 217–227 (2011).
  • Garske T, Ghani AC. Uncertainty in the tail of the variant Creutzfeldt–Jakob disease epidemic in the UK. PLoS One5(12), e15626 (2010).
  • Hilton DA, Ghani AC, Conyers L et al. Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J. Pathol.203(3), 733–739 (2004).
  • Hilton DA. Pathogenesis and prevalence of variant Creutzfeldt–Jakob disease. J. Pathol.208(2), 134–141 (2006).
  • Clewley JP, Kelly CM, Andrews N et al. Prevalence of disease related prion protein in anonymous tonsil specimens in Britain: cross sectional opportunistic survey. Brit. Med. J.338, b1442 (2009).
  • de Marco MF, Linehan J, Gill ON, Clewley JP, Brandner S. Large-scale immunohistochemical examination for lymphoreticular prion protein in tonsil specimens collected in Britain. J. Pathol.222(4), 380–387 (2010).
  • Brown P, Brandel JP, Preese M, Sato T. Iatrogenic Creutzfeldt–Jakob disease: the waning of an era. Neurology67(3), 389–393 (2006).
  • Ironside JW. Variant Creutzfeldt–Jakob disease. Haemophilia16(Suppl. 5), 175–180 (2010).
  • Brown P. Transmissible spongiform encephalopathy in the 21st century: neuroscience for the clinical neurologist. Neurology70(9), 713–722 (2008).
  • Peden AH, Ritchie DL, Ironside JW. Risks of transmission of variant Creutzfeldt–Jakob disease by blood transfusion. Folia Neuropathol.43(4), 271–278 (2005).
  • Jones M, Peden AH, Yull H et al. Human platelets as a substrate source for the in vitro amplification of the abnormal prion protein (PrP) associated with variant Creutzfeldt–Jakob disease. Transfusion49(2), 376–384 (2009).
  • Puopolo M, Ladogana A, Vetrugno V, Pocchiari M. Transmission of sporadic Creutzfeldt–Jakob disease by blood transfusion: risk factor or possible biases. Transfusion51(7), 1556–1566 (2011).
  • Zaman SM, Hill FG, Palmer B et al. The risk of variant Creutzfeldt–Jakob disease among UK patients with bleeding disorders, known to have received potentially contaminated plasma products. Haemophilia17(6), 931–937 (2011).
  • Edgeworth JA, Farmer M, Sicilia A et al. Detection of prion infection in variant Creutzfeldt–Jakob disease: a blood-based assay. Lancet377(9764), 487–493 (2011).
  • Peden AH, McGuire LI, Appleford NE et al. Sensitive and specific detection of sporadic Creutzfeldt–Jakob disease brain prion protein using real-time quaking induced conversion. J. Gen. Virol. doi: 10.1099/vir.0.033365-0 (2011) (Epub ahead of print).
  • Bishop MT, Hart P, Aitchison L et al. Predicting susceptibility and incubation time of human-to-human transmission of vCJD. Lancet Neurol.5(5), 393–398 (2006).
  • Clarke P, Will RG, Ghani AC. Is there the potential for an epidemic of variant Creutzfeldt–Jakob disease via blood transfusion in the UK? J. R. Soc. Interface4(15), 675–684 (2007).
  • Tranulis MA, Benestad SL, Baron T, Kretzschmar H. Atypical prion diseases in humans and animals. Top. Curr. Chem.305, 23–50 (2011).
  • Kong Q, Zheng M, Casalone C et al. Evaluation of the human transmission risk of an atypical bovine spongiform encephalopathy prion strain. J. Virol.82(7), 3697–3701 (2008).
  • Casalone C, Zanusso G, Acutis P et al. Identification of a second bovine amyloidotic spongiform encephalopathy: molecular similarities with sporadic Creutzfeldt–Jakob disease. Proc. Natl Acad. Sci. USA101(9), 3065–3070 (2004).
  • Biacabe AG, Jacobs JG, Bencsik A, Langeveld JP, Baron TG. H-type bovine spongiform encephalopathy: complex molecular features and similarities with human prion diseases. Prion1(1), 61–68 (2007).
  • Comoy EE, Casalone C, Lescoutra-Etchegaray N et al. Atypical BSE (BASE) transmitted from asymptomatic aging cattle to a primate. PLoS One3(8), e3017 (2008).
  • Beringue V, Herzog L, Reine F et al. Transmission of atypical bovine prions to mice transgenic for human prion protein. Emerg. Infect. Dis.14(12), 1898–1901 (2008).
  • Williams ES. Chronic wasting disease. Vet. Pathol.42(5), 530–549 (2005).
  • Aguzzi A, Sigurdson CJ. Antiprion immunotherapy: to suppress or to stimulate? Nat. Rev. Immunol.4(9), 725–736 (2004).
  • Sigurdson CJ. A prion disease of cervids: chronic wasting disease. Vet. Res.39(4), 41 (2008).
  • Gilch S, Chitoor N, Taguchi Y, Stuart M, Jewell JE, Schatzl HM. Chronic wasting disease. Top. Curr. Chem.305, 51–77 (2011).
  • Williams ES, Young S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J. Wildl. Dis.16(1), 89–98 (1980).
  • Williams ES, Young S. Spongiform encephalopathy of Rocky Mountain elk. J. Wildl. Dis.18(4), 465–471 (1982).
  • Beekes M, McBride PA. The spread of prions through the body in naturally acquired transmissible spongiform encephalopathies. FEBS J.274(3), 588–605 (2007).
  • Safar JG, Lessard P, Tamguney G et al. Transmission and detection of prions in feces. J. Infect. Dis.198(1), 81–89 (2008).
  • Belay ED, Maddox RA, Williams ES, Miller MW, Gambetti P, Schonberger LB. Chronic wasting disease and potential transmission to humans. Emerg. Infect. Dis.10, 977–984 (2004).
  • Liberski PP, Guiroy DC, Williams ES, Walis A, Budka H. Deposition patterns of disease-associated prion protein in captive mule deer brains with chronic wasting disease. Acta Neuropathol.102(5), 496–500 (2001).
  • Marsh RF, Kincaid AE, Bessen RA, Bartz JC. Interspecies transmission of chronic wasting disease prions to squirrel monkeys (Saimiri sciureus). J. Virol.79(21), 13794–13796 (2005).
  • Race B, Meade-White KD, Miller MW et al. Susceptibilities of nonhuman primates to chronic wasting disease. Emerg. Infect. Dis.15(9), 1366–1376 (2009).
  • Hamir AN, Kunkle RA, Cutlip RC et al. Experimental transmission of chronic wasting disease agent from mule deer to cattle by the intracerebral route. J. Vet. Diagn. Invest.17(3), 276–281 (2005).
  • Hamir AN, Kunkle RA, Cutlip RC, Miller JM, Williams ES, Richt JA. Transmission of chronic wasting disease of mule deer to Suffolk sheep following intracerebral inoculation. J. Vet. Diagn. Invest.18(6), 558–565 (2006).
  • Heisey DM, Mickelsen NA, Schneider JR et al. Chronic wasting disease (CWD) susceptibility of several North American rodents that are sympatric with cervid CWD epidemics. J. Virol.84(1), 210–215 (2010).
  • Kurt TD, Seelig DM, Schneider JR et al. Alteration of the chronic wasting disease species barrier by in vitro prion amplification. J. Virol.85(17), 8528–8537 (2011).
  • Hamir AN, Greenlee JJ, Nicholson EM et al. Experimental transmission of chronic wasting disease (CWD) from elk and white-tailed deer to fallow deer by intracerebral route: final report. Can. J. Vet. Res.75(2), 152–156 (2011).
  • Krumm CE, Conner MM, Hobbs NT, Hunter DO, Miller MW. Mountain lions prey selectively on prion-infected mule deer. Biol. Lett.6(2), 209–211 (2010).
  • Kong Q, Huang S, Zou W et al. Chronic wasting disease of elk: transmissibility to humans examined by transgenic mouse models. J. Neurosci.25(35), 7944–7949 (2005).
  • Tamguney G, Giles K, Bouzamondo-Bernstein E et al. Transmission of elk and deer prions to transgenic mice. J. Virol.80(18), 9104–9114 (2006).
  • Sandberg M, Al-Doujaily H, Sigurdson C et al. Chronic wasting disease prions are not transmissible to transgenic mice over-expressing human prion protein. J. Gen. Virol.91(10), 2651–2657 (2010).
  • Angers RC, Kang HE, Napier D et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science328(5982), 1154–1158 (2010).
  • Collinge J. Prion strain mutation and selection. Science328, 1111–1112 (2010).
  • Johnson CJ, Herbst A, Duque-Velasquez C et al. Prion protein polymorphisms affect chronic wasting disease progression. PLoS One6(3), e17450 (2011).
  • Angers RC, Browning SR, Seward TS et al. Prions in skeletal muscles of deer with chronic wasting disease. Science311(5764), 1117 (2006).
  • Mathiason CK, Powers JG, Dahmes SJ et al. Infectious prions in the saliva and blood of deer with chronic wasting disease. Science314(5796), 133–136 (2006).
  • Mathiason CK, Hayes-Klug J, Hays SA et al. B cells and platelets harbor prion infectivity in the blood of deer infected with chronic wasting disease. J. Virol.84(10), 5097–5107 (2010).
  • Race B, Meade-White K, Race R, Chesebro B. Prion infectivity in fat of deer with chronic wasting disease. J. Virol.83(18), 9608–9610 (2009).
  • Haley NJ, Seelig DM, Zabel MD, Telling GC, Hoover EA. Detection of CWD prions in urine and saliva of deer by transgenic mouse bioassay. PLoS One4(3), e4848 (2009).
  • Tamguney G, Miller MW, Wolfe LL et al. Asymptomatic deer excrete infectious prions in faeces. Nature461(7263), 529–532 (2009).
  • Angers RC, Seward TS, Napier D et al. Chronic wasting disease prions in elk antler velvet. Emerg. Infect. Dis.15(5), 696–703 (2009).
  • Barria MA, Telling GC, Gambetti P, Mastrianni JA, Soto C. Generation of a new form of human PrP(Sc) in vitro by interspecies transmission from cervid prions. J. Biol. Chem.286(9), 7490–7495 (2011).
  • Collinge J, Whitfield J, McKintosh E et al. Kuru in the 21st century – an acquired human prion disease with very long incubation periods. Lancet367(9528), 2068–2074 (2006).
  • Smith CB, Booth CJ, Pedersen JA. Fate of prions in soil: a review. J. Environ. Qual.40(2), 449–461 (2011).
  • Johnson CJ, Phillips KE, Schramm PT, McKenzie D, Aiken JM, Pedersen JA. Prions adhere to soil minerals and remain infectious. PLoS Pathog.2(4), e32 (2006).
  • Saunders SE, Bartz JC, Vercauteren KC, Bartelt-Hunt SL. Enzymatic digestion of chronic wasting disease prions bound to soil. Environ. Sci. Technol.44(11), 4129–4135 (2010).
  • Nichols TA, Pulford B, Wyckoff AC et al. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. Prion3(3), 171–183 (2009).
  • Johnson CJ, Pedersen JA, Chappell RJ, McKenzie D, Aiken JM. Oral transmissibility of prion disease is enhanced by binding to soil particles. PLoS Pathog.3(7), e93 (2007).
  • Abrams JY, Maddox RA, Harvey AR, Schonberger LB, Belay ED. Travel history, hunting, and venison consumption related to prion disease exposure, 2006–2007 FoodNet population survey. J. Am. Diet. Assoc.111(6), 858–863 (2011).
  • Denkers ND, Seelig DM, Telling GC, Hoover EA. Aerosol and nasal transmission of chronic wasting disease in cervidized mice. J. Gen. Virol.91(Pt 6), 1651–1658 (2010).
  • Haybaeck J, Heikenwalder M, Klevenz B et al. Aerosols transmit prions to immunocompetent and immunodeficient mice. PLoS Pathog.7(1), e1001257 (2011).
  • Aguzzi A, Heikenwalder M. Prions, cytokines, and chemokines: a meeting in lymphoid organs. Immunity22(2), 145–154 (2005).
  • Aucouturier P, Carp RI, Carnaud C, Wisniewski T. Prion diseases and the immune system. Clin. Immunol.96, 79–85 (2000).
  • Wisniewski T, Goni F. Immunomodulation for prion and prion related diseases. Expert Rev. Vaccines9(12), 1441–1452 (2010).
  • Bremer J, Heikenwalder M, Haybaeck J et al. Repetitive immunization enhances the susceptibility of mice to peripherally administered prions. PLoS One4(9), e7160 (2009).
  • Brown KL, Ritchie DL, McBride PA, Bruce ME. Detection of PrP in extraneural tissues. Microscopy Res. Tech.50(1), 40–45 (2000).
  • Mabbott NA, MacPherson GG. Prions and their lethal journey to the brain. Nat. Rev. Microbiol.4(3), 201–211 (2006).
  • Kitamoto T, Muramoto T, Mohri S, Doh-ura K, Tateishi J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt–Jakob disease. J. Virol.65(11), 6292–6295 (1991).
  • Aucouturier P, Geissmann F, Damotte D et al. Infected dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J. Clin. Invest.108, 703–708 (2001).
  • Langevin C, Gousset K, Costanzo M, Richard-Le GO, Zurzolo C. Characterization of the role of dendritic cells in prion transfer to primary neurons. Biochem. J.431(2), 189–198 (2010).
  • Sigurdsson EM, Wisniewski T. Promising developments in prion immunotherapy. Expert Rev. Vaccines4, 607–610 (2005).
  • Goni F, Prelli F, Schreiber F et al. High titers of mucosal and systemic anti-PrP antibodies abrogates oral prion infection in mucosal vaccinated mice. Neuroscience153, 679–686 (2008).
  • Wisniewski T, Chabalgoity JA, Goni F. Is vaccination against transmissible spongiform encephalopathies feasible? OIE Sci. Tech. Rev.26(1), 243–251 (2007).
  • Bartz JC, DeJoia C, Tucker T, Kincaid AE, Bessen RA. Extraneural prion neuroinvasion without lymphoreticular system infection. J. Virol.79(18), 11858–11863 (2005).
  • Bessen RA, Martinka S, Kelly J, Gonzalez D. Role of the lymphoreticular system in prion neuroinvasion from the oral and nasal mucosa. J. Virol.83(13), 6435–6445 (2009).
  • Siso S, Gonzalez L, Jeffrey M. Neuroinvasion in Prion diseases: the roles of ascending neural infection and blood dissemination. Interdiscip. Perspect. Infect. Dis.2010, 747892 (2010).
  • Selkoe DJ. Resolving controversies on the path to Alzheimer’s therapeutics. Nat. Med.17(9), 1060–1065 (2011).
  • Wisniewski T, Boutajangout A. Immunotherapeutic approaches for Alzheimer’s disease in transgenic mouse models. Brain Struct. Funct.214, 201–218 (2010).
  • Wisniewski T, Sigurdsson EM. Murine models of Alzheimer’s disease and their use in developing immunotherapies. Biochim. Biophys. Acta Mol. Basis Dis.1802(10), 847–859 (2010).
  • Brody DL, Holtzman DM. Active and passive immunotherapy for neurodegenerative diseass. Annu. Rev. Neurosci.31, 175–193 (2008).
  • Rinne JO, Brooks DJ, Rossor MN et al. (11)C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: a Phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol.9(4), 363–372 (2010).
  • Ostrowitzki S, Deptula D, Thurfjell L et al. Mechanism of amyloid removal in patients with alzheimer disease treated with gantenerumab. Arch. Neurol. doi:10.1001/archneurol.2011.1538 (2011) (Epub ahead of print).
  • Selkoe DJ. Alzheimer’s disease. Cold Spring Harb. Perspect. Biol.3(7), pii: a004457 (2011).
  • Morgan D. Immunotherapy for Alzheimer’s disease. J. Intern. Med.269, 54–63 (2011).
  • Boutajangout A, Sigurdsson EM, Krishnamurthy PK. τ as A therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res.8(6), 666–677 (2011).
  • Gu J, Sigurdsson EM. Immunotherapy for tauopathies. J. Mol. Neurosci.45(3), 690–695 (2011).
  • Come JH, Fraser PE, Lansbury PT Jr. A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc. Natl Acad. Sci. USA90(13), 5959–5963 (1993).
  • Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science216, 136–144 (1982).
  • Sigurdson CJ, Nilsson KP, Hornemann S et al.De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proc. Natl Acad. Sci. USA106(1), 304–309 (2009).
  • Sigurdson CJ, Nilsson KP, Hornemann S et al. A molecular switch controls interspecies prion disease transmission in mice. J. Clin. Invest.120(7), 2590–2599 (2010).
  • Sigurdson CJ, Joshi-Barr S, Bett C et al. Spongiform encephalopathy in transgenic mice expressing a point mutation in the {β}2-{α}2 loop of the Prion protein. J. Neurosci.31(39), 13840–13847 (2011).
  • Gabizon R, McKinley MP, Groth D, Prusiner SB. Immunoaffinity purification and neutralization of scrapie prion infectivity. Proc. Natl Acad. Sci. USA85(18), 6617–6621 (1988).
  • Enari M, Flechsig E, Weissmann C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA98(16), 9295–9299 (2001).
  • Peretz D, Williamson RA, Kaneko K et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature412(6848), 739–743 (2001).
  • Kim CL, Umetani A, Matsui T, Ishiguro N, Shinagawa M, Horiuchi M. Antigenic characterization of an abnormal isoform of prion protein using a new diverse panel of monoclonal antibodies. Virology320(1), 40–51 (2004).
  • Kim CL, Karino A, Ishiguro N, Shinagawa M, Sato M, Horiuchi M. Cell-surface retention of PrPC by anti-PrP antibody prevents protease-resistant PrP formation. J. Gen. Virol.85(Pt 11), 3473–3482 (2004).
  • Pankiewicz J, Prelli F, Sy MS et al. Clearance and prevention of prion infection in cell culture by anti-PrP antibodies. Eur. J. Neurosci.24, 2635–2647 (2006).
  • Westergard L, Turnbaugh JA, Harris DA. A nine amino acid domain is essential for mutant prion protein toxicity. J. Neurosci.31(39), 14005–14017 (2011).
  • Petsch B, Muller-Schiffmann A, Lehle A et al. Biological effects and use of PrPSc- and PrP-specific antibodies generated by immunization with purified full-length native mouse prions. J. Virol.85(9), 4538–4546 (2011).
  • Sigurdsson EM, Sy MS, Li R et al. Anti-PrP antibodies for prophylaxis following prion exposure in mice. Neurosci. Lett.336, 185–187 (2003).
  • White AR, Enever P, Tayebl M et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature422, 80–83 (2003).
  • Sadowski MJ, Pankiewicz J, Prelli F et al. Anti-PrP Mab 6D11 suppresses PrPSc replication in prion infected myeloid precursor line FDC-P1/22L and in the lymphoreticular system in vivo. Neurobiol. Dis.34, 267–278 (2009).
  • Song CH, Furuoka H, Kim CL et al. Effect of intraventricular infusion of anti-prion protein monoclonal antibodies on disease progression in prion-infected mice. J. Gen. Virol.89(Pt 6), 1533–1544 (2008).
  • Solforosi L, Criado JR, McGavern DB et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science303(5663), 1514–1516 (2004).
  • Lefebvre-Roque M, Kremmer E, Gilch S et al. Toxic effects of intracerebral PrP antibody administration during the course of BSE infection in mice. Prion1(3), 198–206 (2007).
  • Mallucci GR, White MD, Farmer M et al. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron53(3), 325–335 (2007).
  • Verity NC, Mallucci GR. Rescuing neurons in prion disease. Biochem. J.433(1), 19–29 (2011).
  • Morgan D, Diamond DM, Gottschall PE et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature408, 982–985 (2000).
  • Janus C, Pearson J, McLaurin J et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature408, 979–982 (2000).
  • Sigurdsson EM, Knudsen EL, Asuni A et al. An attenuated immune response is sufficient to enhance cognition in an Alzheimer’s disease mouse model immunized with amyloid-β derivatives. J. Neurosci.24, 6277–6282 (2004).
  • Asuni A, Boutajangout A, Scholtzova H et al. Aβ derivative vaccination in alum adjuvant prevents amyloid deposition and does not cause brain microhemorrhages in Alzheimer’s model mice. Eur. J. Neurosci.24, 2530–2542 (2006).
  • Goni F, Prelli F, Ji Y et al. Immunomodulation targeting abnormal protein conformation reduces pathology in a mouse model of Alzheimer’s disease. PLoS One5(10), e13391 (2010).
  • Bard F, Cannon C, Barbour R et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med.6(8), 916–919 (2000).
  • Gilman S, Koller M, Black RS et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interupted trial. Neurology64, 1553–1562 (2005).
  • Wisniewski T, Frangione B. Immunological and anti-chaperone therapeutic approaches for Alzheimer’s disease. Brain Pathol.15, 72–77 (2005).
  • Wisniewski T. Commentary on “Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial.” Nat. Clin. Prac. Neurol.64, 1553–1562 (2005).
  • Hock C, Konietzko U, Straffer JR et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer’s disease. Neuron38, 547–554 (2003).
  • Wisniewski T, Boutajangout A. Vaccination as a therapeutic approach for Alzheimer’s disease. Mount Sinai J. Med.77, 17–31 (2010).
  • Boche D, Donald J, Love S et al. Reduction of aggregated τ in neuronal processes but not in the cell bodies after Aβ42 immunisation in Alzheimer’s disease. Acta Neuropathol.120, 13–20 (2010).
  • Holmes C, Boche D, Wilkinson D et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled Phase 1 trial. Lancet372(9634), 216–223 (2008).
  • Weiner HL, Frenkel D. Immunology and immunotherapy of Alzheimer’s disease. Nat. Rev. Immunol.6(5), 404–416 (2006).
  • Wisniewski T, Konietzko U. Amyloid-β immunization for Alzheimer’s disease. Lancet Neurol.7(9), 805–811 (2008).
  • Lemere CA, Masliah E. Can Alzheimer disease be prevented by amyloid-β immunotherapy? Nat. Rev. Neurol.6(2), 108–119 (2010).
  • Manuelidis L. Vaccination with an attenuated Creutzfeldt–Jakob disease strain prevents expression of a virulent agent. Proc. Natl Acad. Sci. USA95(5), 2520–2525 (1998).
  • Sigurdsson EM, Brown DR, Daniels M et al. Vaccination delays the onset of prion disease in mice. Am. J. Pathol.161, 13–17 (2002).
  • Polymenidou M, Heppner FL, Pellicioli EC et al. Humoral immune response to native eukaryotic prion protein correlates with anti-prion protection. Proc. Natl Acad. Sci.101(Suppl. 2), 14670–14676 (2004).
  • Gilch S, Wopfner F, Renner-Muller I et al. Polyclonal anti-PrP auto-antibodies induced with dimeric PrP interfere efficiently with PrPSc propagation in prion-infected cells. J. Biol. Chem.278(20), 18524–18531 (2003).
  • Magri G, Clerici M, Dall’Ara P et al. Decrease in pathology and progression of scrapie after immunisation with synthetic prion protein peptides in hamsters. Vaccine23(22), 2862–2868 (2005).
  • Schwarz A, Kratke O, Burwinkel M et al. Immunization with a synthetic prion protein-derived peptide prolongs survival times of mice orally exposed to the scrapie agent. Neurosci. Lett.350, 187–189 (2003).
  • Pilon J, Loiacono C, Okeson D et al. Anti-prion activity generated by a novel vaccine formulation. Neurosci. Lett.429(2–3), 161–164 (2007).
  • Mastroeni P, Chabalgoity JA, Dunstan SJ, Maskell DJ, Dougan G. Salmonella: immune responses and vaccines. Vet. J.161(2), 132–164 (2001).
  • Moreno M, Kramer MG, Yim L, Chabalgoity JA. Salmonella as live trojan horse for vaccine development and cancer gene therapy. Curr. Gene Ther.10(1), 56–76 (2010).
  • Tacket CO, Sztein MB, Wasserman SS et al. Phase 2 clinical trial of attenuated Salmonella enterica serovar Typhi oral live vector vaccine CVD 908-htrA in U.S. volunteers. Infect. Immun.68(3), 1196–1201 (2000).
  • Kirkpatrick BD, McKenzie R, O’Neill JP et al. Evaluation of Salmonella enterica serovar Typhi (Ty2 aroC-ssaV-) M01ZH09, with a defined mutation in the Salmonella pathogenicity island 2, as a live, oral typhoid vaccine in human volunteers. Vaccine24(2), 116–123 (2006).
  • Villarreal-Ramos B, Manser J, Collins RA, Dougan G, Chatfield SN, Howard CJ. Immune responses in calves immunised orally or subcutaneously with a live Salmonella Typhimurium aro vaccine. Vaccine16(1), 45–54 (1998).
  • Chabalgoity JA, Moreno M, Carol H, Dougan G, Hormaeche CE. A dog-adapted Salmonella Typhimurium strain as a basis for a live oral Echinococcus granulosus vaccine. Vaccine19, 460–469 (2000).
  • Heppner FL, Christ AD, Klein MA et al. Transepithelial prion transport by M cells. Nat. Med.7(9), 976–977 (2001).
  • Goni F, Knudsen EL, Schreiber F et al. Mucosal vaccination delays or prevents prion infection via an oral route. Neuroscience133, 413–421 (2005).
  • Wisniewski T, Mathiason C, Wong V et al. Specific anti-PrP mucosal and systemic responses in white tail deer vaccinated with attenuated Salmonella expressing deer PrP. Alz. Dementia7(4 Suppl. 1), S687–S688 (2011).
  • Zou WQ, Cashman NR. Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form. J. Biol. Chem.277(46), 43942–43947 (2002).
  • Paramithiotis E, Pinard M, Lawton T et al. A prion protein epitope selective for the pathologically misfolded conformation. Nat. Med.9(7), 893–899 (2003).
  • Hedlin PD, Cashman NR, Li L et al. Design and delivery of a cryptic PrP(C) epitope for induction of PrP(Sc)-specific antibody responses. Vaccine28(4), 981–988 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.