212
Views
46
CrossRef citations to date
0
Altmetric
Review

Tuberculosis assays: past, present and future

, , , , &
Pages 457-469 | Published online: 10 Jan 2014

References

  • Iseman MD. A Clinician’s Guide to Tuberculosis. Lippincott Williams & Wilkins, Philadelphia, PA, USA (2000).
  • WHO. Global Tuberculosis Control: a Short Update to the 2009 Report. WHO, Geneva, Switzerland (2010).
  • Wood R, Middelkoop K, Myer L et al. Undiagnosed tuberculosis in a community with high HIV prevalence: implications for tuberculosis control. Am. J. Respir. Crit. Care Med.175(1), 87–93 (2007).
  • Stop TB Partnership, WHO. The Global Plan to Stop TB 2011–2015: Transforming the Fight Towards Elimination of Tuberculosis. WHO, Geneva, Switzerland (2010).
  • Botha E, den Boon S, Lawrence KA et al. From suspect to patient: tuberculosis diagnosis and treatment initiation in health facilities in South Africa. Int. J. Tuberc. Lung Dis.12(8), 936–941 (2008).
  • Habib AG. A clinical and epidemiologic update on the interaction between tuberculosis and human immunodeficiency virus infection in adults. Ann. Afr. Med.8(3), 147–155 (2009).
  • Marais BJ, Gupta A, Starke JR, El Sony A. Tuberculosis in women and children. Lancet375(9731), 2057–2059 (2010).
  • Marais BJ, Gie RP, Schaaf HS, Beyers N, Donald PR, Starke JR. Childhood pulmonary tuberculosis: old wisdom and new challenges. Am. J. Respir. Crit. Care Med.173(10), 1078–1090 (2006).
  • Tattevin P, Casalino E, Fleury L, Egmann G, Ruel M, Bouvet E. The validity of medical history, classic symptoms, and chest radiographs in predicting pulmonary tuberculosis: derivation of a pulmonary tuberculosis prediction model. Chest115(5), 1248–1253 (1999).
  • Wejse C, Gustafson P, Nielsen J et al. TBscore: signs and symptoms from tuberculosis patients in a low-resource setting have predictive value and may be used to assess clinical course. Scand. J. Infect. Dis.40(2), 111–120 (2008).
  • Miller LG, Asch SM, Yu EI, Knowles L, Gelberg L, Davidson P. A population-based survey of tuberculosis symptoms: how atypical are atypical presentations? Clin. Infect. Dis.30(2), 293–299 (2000).
  • Siddiqi K, Lambert ML, Walley J. Clinical diagnosis of smear-negative pulmonary tuberculosis in low-income countries: the current evidence. Lancet Infect. Dis.3(5), 288–296 (2003).
  • Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C. Tuberculosis. Lancet362(9387), 887–899 (2003).
  • Graham S, Das GK, Hidvegi RJ et al. Chest radiograph abnormalities associated with tuberculosis: reproducibility and yield of active cases. Int. J. Tuberc. Lung Dis.6(2), 137–142 (2002).
  • Lee KS, Song KS, Lim TH, Kim PN, Kim IY, Lee BH. Adult-onset pulmonary tuberculosis: findings on chest radiographs and CT scans. Am. J. Roentgenol.160(4), 753–758 (1993).
  • Rathman G, Sillah J, Hill PC et al. Clinical and radiological presentation of 340 adults with smear-positive tuberculosis in The Gambia. Int. J. Tuberc. Lung Dis.7(10), 942–947 (2003).
  • Goo JM, Im JG, Do KH et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology216(1), 117–121 (2000).
  • Lee KS, Hwang JW, Chung MP, Kim H, Kwon OJ. Utility of CT in the evaluation of pulmonary tuberculosis in patients without AIDS. Chest110(4), 977–984 (1996).
  • Hara T, Kosaka N, Suzuki T, Kudo K, Niino H. Uptake rates of 18F-fluorodeoxyglucose and 11C-choline in lung cancer and pulmonary tuberculosis: a positron emission tomography study. Chest124(3), 893–901 (2003).
  • Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis: part II. Active tuberculosis and drug resistance. Expert Rev. Mol. Diagn.6(3), 423–432 (2006).
  • WHO. Global Tuberculosis Control 2008 – Surveillance, Planning, Financing. WHO, Geneva, Switzerland, 12, 1–304 (2008).
  • Hawken MP, Muhindi DW, Chakaya JM, Bhatt SM, Ng’ang’a LW, Porter JD. Under-diagnosis of smear-positive pulmonary tuberculosis in Nairobi, Kenya. Int. J. Tuberc. Lung Dis.5(4), 360–363 (2001).
  • Apers L, Mutsvangwa J, Magwenzi J et al. A comparison of direct microscopy, the concentration method and the Mycobacteria Growth Indicator Tube for the examination of sputum for acid-fast bacilli. Int. J. Tuberc. Lung Dis.7(4), 376–381 (2003).
  • Conde MB, Figueira CM, Moraes R, Fonseca LS, DeRiemer K, Kritski AL. Predictive value of the acid fast smear for detection of Mycobacterium tuberculosis in respiratory specimens in a reference center of HIV/AIDS in Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz94(6), 787–790 (1999).
  • Davies PD, Pai M. The diagnosis and misdiagnosis of tuberculosis. Int. J. Tuberc. Lung Dis.12(11), 1226–1234 (2008).
  • Steingart KR, Ng V, Henry M et al. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet Infect. Dis.6(10), 664–674 (2006).
  • Steingart KR, Henry M, Ng V et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect. Dis.6(9), 570–581 (2006).
  • Marais BJ, Brittle W, Painczyk K et al. Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum. Clin. Infect. Dis.47(2), 203–207 (2008).
  • Palomino JC. Newer diagnostics for tuberculosis and multi-drug resistant tuberculosis. Curr. Opin. Pulm. Med.12(3), 172–178 (2006).
  • Drobniewski FA, Caws M, Gibson A, Young D. Modern laboratory diagnosis of tuberculosis. Lancet Infect. Dis.3(3), 141–147 (2003).
  • Lee JJ, Suo J, Lin CB, Wang JD, Lin TY, Tsai YC. Comparative evaluation of the BACTEC MGIT 960 system with solid medium for isolation of mycobacteria. Int. J. Tuberc. Lung Dis.7(6), 569–574 (2003).
  • Somoskovi A, Kodmon C, Lantos A et al. Comparison of recoveries of Mycobacterium tuberculosis using the automated BACTEC MGIT 960 system, the BACTEC 460 TB system, and Lowenstein-Jensen medium. J. Clin. Microbiol.38(6), 2395–2397 (2000).
  • Tortoli E, Cichero P, Chirillo MG et al. Multicenter comparison of ESP Culture System II with BACTEC 460TB and with Lowenstein-Jensen medium for recovery of mycobacteria from different clinical specimens, including blood. J. Clin. Microbiol.36(5), 1378–1381 (1998).
  • Perkins MD, Cunningham J. Facing the crisis: improving the diagnosis of tuberculosis in the HIV era. J. Infect. Dis.196(Suppl. 1), S15–S27 (2007).
  • Kim SJ. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur. Respir. J.25(3), 564–569 (2005).
  • Drobniewski F, Rusch-Gerdes S, Hoffner S. Antimicrobial susceptibility testing of Mycobacterium tuberculosis (EUCAST document E.DEF 8.1)–report of the Subcommittee on Antimicrobial Susceptibility Testing of Mycobacterium tuberculosis of the European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Clin. Microbiol. Infect.13(12), 1144–1156 (2007).
  • Johnson R, Jordaan AM, Pretorius L et al. Ethambutol resistance testing by mutation detection. Int. J. Tuberc. Lung Dis.10(1), 68–73 (2006).
  • Robledo JA, Mejia GI, Morcillo N et al. Evaluation of a rapid culture method for tuberculosis diagnosis: a Latin American multi-center study. Int. J. Tuberc. Lung Dis.10(6), 613–619 (2006).
  • Martin A, Paasch F, Von GA et al. Thin-layer agar for detection of resistance to rifampicin, ofloxacin and kanamycin in Mycobacterium tuberculosis isolates. Int. J. Tuberc. Lung Dis.13(10), 1301–1304 (2009).
  • Bwanga F, Hoffner S, Haile M, Joloba ML. Direct susceptibility testing for multi drug resistant tuberculosis: a meta-analysis. BMC Infect. Dis.9, 67 (2009).
  • Yajko DM, Madej JJ, Lancaster MV, et al. Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis. J. Clin. Microbiol.33, 2324–2327 (1995).
  • Martin A, Morcillo N, Lemus D et al. Multicenter study of MTT and resazurin assays for testing susceptibility to first-line anti-tuberculosis drugs. Int. J. Tuberc. Lung Dis.9(8), 901–906 (2005).
  • Angeby KA, Klintz L, Hoffner SE. Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J. Clin. Microbiol.40(2), 553–555 (2002).
  • Pai M, Kalantri S, Pascopella L, Riley LW, Reingold AL. Bacteriophage-based assays for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a meta-analysis. J. Infect.51(3), 175–187 (2005).
  • Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin. Microbiol. Rev.16(2), 319–354 (2003).
  • Richter E, Rüsch-Gerdes S, Hillemann D. Drug-susceptibility testing in TB: current status and future prospects. Expert Rev. Respir. Med.3(5), 497–510 (2009).
  • Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur. Respir. J.32(5), 1165–1174 (2008).
  • Morgan M, Kalantri S, Flores L, Pai M. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect. Dis.5, 62 (2005).
  • Barnard M, Albert H, Coetzee G, O’Brien R, Bosman ME. Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa. Am. J. Respir. Crit. Care Med.177(7), 787–792 (2008).
  • Hillemann D, Rusch-Gerdes S, Richter E. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin–capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J. Clin. Microbiol.47(6), 1767–1772 (2009).
  • Kiet VS, Lan NT, An DD et al. Evaluation of the MTBDRsl test for detection of second-line-drug resistance in Mycobacterium tuberculosis. J. Clin Microbiol.48(8), 2934–2939 (2010).
  • Helb D, Jones M, Story E et al. Rapid detection of Mycobacterium tuberculosis and rifampin-resistance using on-demand, near patient technology. J. Clin. Microbiol.48(1), 229–237 (2009).
  • Raja S, Ching J, Xi L et al. Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing. Clin. Chem.51(5), 882–890 (2005).
  • Boehme CC, Nabeta P, Hillemann D et al. Rapid molecular detection of tuberculosis and rifampicin resistance. N. Engl. J. Med.363(11), 1070–1081 (2010).
  • Piatek AS, Telenti A, Murray MR et al. Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing. Antimicrob. Agents Chemother.44(1), 103–110 (2000).
  • Zhu RY, Zhang KX, Zhao MQ et al. Use of visual loop-mediated isotheral amplification of rimM sequence for rapid detection of Mycobacterium tuberculosis and Mycobacterium bovis. J. Microbiol. Methods78(3), 339–343 (2009).
  • Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc.3(5), 877–882 (2008).
  • Iwamoto T, Sonobe T, Hayashi K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J. Clin. Microbiol.41(6), 2616–2622 (2003).
  • Pandey BD, Poudel A, Yoda T et al. Development of an in-house loop-mediated isothermal amplification (LAMP) assay for detection of Mycobacterium tuberculosis and evaluation in sputum samples of Nepalese patients. J. Med. Microbiol.57(Pt 4), 439–443 (2008).
  • Boehme CC, Nabeta P, Henostroza G et al. Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J. Clin. Microbiol.45(6), 1936–1940 (2007).
  • Cannas A, Goletti D, Girardi E et al. Mycobacterium tuberculosis DNA detection in soluble fraction of urine from pulmonary tuberculosis patients. Int. J. Tuberc. Lung Dis.12(2), 146–151 (2008).
  • Aceti A, Zanetti S, Mura MS et al. Identification of HIV patients with active pulmonary tuberculosis using urine based polymerase chain reaction assay. Thorax54(2), 145–146 (1999).
  • Sarmiento OL, Weigle KA, Alexander J, Weber DJ, Miller WC. Assessment by meta-analysis of PCR for diagnosis of smear-negative pulmonary tuberculosis. J. Clin. Microbiol.41(7), 3233–3240 (2003).
  • Ling DI, Flores LL, Riley LW, Pai M. Commercial nucleic-acid amplification tests for diagnosis of pulmonary tuberculosis in respiratory specimens: meta-analysis and meta-regression. PLoS ONE3(2), e1536 (2008).
  • Dinnes J, Deeks J, Kunst H et al. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol. Assess.11(3), 1–196 (2007).
  • Reid MJ, Shah NS. Approaches to tuberculosis screening and diagnosis in people with HIV in resource-limited settings. Lancet Infect. Dis.9(3), 173–184 (2009).
  • Sakula A. Robert Koch: centenary of the discovery of the tubercle bacillus, 1882. Thorax37(4), 246–251 (1982).
  • Shingadia D, Novelli V. The tuberculin skin test: a hundred, not out? Arch. Dis. Child.93(3), 189–190 (2008).
  • Menzies D, Pai M, Comstock G. Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann. Intern. Med.146(5), 340–354 (2007).
  • Diagnostic Standards and Classification of Tuberculosis in Adults and Children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statement was endorsed by the Council of the Infectious Disease Society of America, September 1999. Am. J. Respir. Crit. Care Med.161(4 Pt 1), 1376–1395 (2000).
  • Watkins RE, Brennan R, Plant AJ. Tuberculin reactivity and the risk of tuberculosis: a review. Int. J. Tuberc. Lung Dis.4(10), 895–903 (2000).
  • Stout JE, Menzies D. Predicting tuberculosis: does the IGRA tell the tale? Am. J. Respir. Crit. Care Med.177(10), 1055–1057 (2008).
  • van Pinxteren LA, Ravn P, Agger EM, Pollock J, Andersen P. Diagnosis of tuberculosis based on the two specific antigens ESAT-6 and CFP10. Clin. Diagn. Lab. Immunol.7(2), 155–160 (2000).
  • Lalvani A. Diagnosing tuberculosis infection in the 21st Century: new tools to tackle an old enemy. Chest131(6), 1898–1906 (2007).
  • Lalvani A, Millington KA. T cell-based diagnosis of childhood tuberculosis infection. Curr. Opin. Infect. Dis.20(3), 264–271 (2007).
  • Pai M, Riley LW, Colford JM Jr. Interferon-γ assays in the immunodiagnosis of tuberculosis: a systematic review. Lancet Infect. Dis.4(12), 761–776 (2004).
  • Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis: part I. Latent tuberculosis. Expert Rev. Mol. Diagn.6(3), 413–422 (2006).
  • Pai M, O’Brien R. New diagnostics for latent and active tuberculosis: state of the art and future prospects. Semin. Respir. Crit. Care Med.29(5), 560–568 (2008).
  • Sester M, Sotgiu G, Lange C et al. Interferon-γ release assays for the diagnosis of active tuberculosis: a systematic review and meta-analysis. Eur. Respir. J. DOI: 10.1183/09031936.00114810 (2010) (Epub ahead of print).
  • Richeldi L. An update on the diagnosis of tuberculosis infection. Am. J. Respir. Crit. Care Med.174(7), 736–742 (2006).
  • Hill PC, Jackson-Sillah D, Donkor SA, Otu J, Adegbola RA, Lienhardt C. Risk factors for pulmonary tuberculosis: a clinic-based case control study in The Gambia. BMC Public Health6, 156 (2006).
  • Lienhardt C, Sillah J, Fielding K et al. Risk factors for tuberculosis infection in children in contact with infectious tuberculosis cases in the Gambia, West Africa. Pediatrics111(5 Pt 1), e608–e614 (2003).
  • Hesseling AC, Mandalakas AM, Kirchner HL et al. Highly discordant T cell responses in individuals with recent exposure to household tuberculosis. Thorax64(10), 840–846 (2009).
  • Mandalakas AM, Hesseling AC, Chegou NN et al. High level of discordant IGRA results in HIV-infected adults and children. Int. J. Tuberc. Lung Dis.12(4), 417–423 (2008).
  • Shams H, Weis SE, Klucar P et al. Enzyme-linked immunospot and tuberculin skin testing to detect latent tuberculosis infection. Am. J. Respir. Crit. Care Med.172(9), 1161–1168 (2005).
  • Aichelburg MC, Rieger A, Breitenecker F et al. Detection and prediction of active tuberculosis disease by a whole-blood interferon-γ release assay in HIV-1-infected individuals. Clin. Infect. Dis.48(7), 954–962 (2009).
  • Diel R, Loddenkemper R, Meywald-Walter K, Niemann S, Nienhaus A. Predictive value of a whole blood IFN-γ assay for the development of active tuberculosis disease after recent infection with Mycobacterium tuberculosis. Am. J. Respir. Crit. Care Med.177(10), 1164–1170 (2008).
  • Diel R, Goletti D, Ferrara G et al. Interferon-γ release assays for the diagnosis of latent M. tuberculosis infection: a systematic review and meta-analysis. Eur. Respir. J.37(1), 88–89 (2010).
  • Kik SV, Franken WPJ, Mensen M et al. Predictive value for progression to tuberculosis by IGRA and TST in immigrant contacts. Eur. Respir. J.35(6), 1346–1353 (2010).
  • Clark SA, Martin SL, Pozniak A et al. Tuberculosis antigen-specific immune responses can be detected using enzyme-linked immunospot technology in human immunodeficiency virus (HIV)-1 patients with advanced disease. Clin. Exp. Immunol.150(2), 238–244 (2007).
  • Todd B. The Quantiferon TB Gold Test. A new blood assay offers a promising alternative in tuberculosis testing. Am. J. Nurs.106(6), 33–37 (2006).
  • Liebeschuetz S, Bamber S, Ewer K, Deeks J, Pathan AA, Lalvani A. Diagnosis of tuberculosis in South African children with a T-cell-based assay: a prospective cohort study. Lancet364(9452), 2196–2203 (2004).
  • Dheda K, Smit RZ, Badri M, Pai M. T-cell interferon-γ release assays for the rapid immunodiagnosis of tuberculosis: clinical utility in high-burden vs. low-burden settings. Curr. Opin. Pulm. Med.15(3), 188–200 (2009).
  • Hill PC, Brookes RH, Fox A et al. Surprisingly high specificity of the PPD skin test for M. tuberculosis infection from recent exposure in The Gambia. PLoS ONE1, e68 (2006).
  • Kampmann B, Whittaker E, Williams A et al. Interferon-γ release assays do not identify more children with active tuberculosis than the tuberculin skin test. Eur. Respir. J.33(6), 1374–1382 (2009).
  • Ravn P, Munk ME, Andersen AB et al. Prospective evaluation of a whole-blood test using Mycobacterium tuberculosis-specific antigens ESAT-6 and CFP-10 for diagnosis of active tuberculosis. Clin. Diagn. Lab. Immunol.12(4), 491–496 (2005).
  • Kobashi Y, Mouri K, Yagi S et al. Clinical evaluation for diagnosing active TB disease and transitional change of two commercial blood tests. Scand. J. Infect. Dis.40(8), 629–634 (2008).
  • Mori T, Sakatani M, Yamagishi F et al. Specific detection of tuberculosis infection: an interferon-γ-based assay using new antigens. Am. J. Respir. Crit. Care Med.170(1), 59–64 (2004).
  • Wang JY, Chou CH, Lee LN et al. Diagnosis of tuberculosis by an enzyme-linked immunospot assay for interferon-γ. Emerg. Infect. Dis.13(4), 553–558 (2007).
  • Goletti D, Carrara S, Mayanja-Kizza H et al. Response to M. tuberculosis selected RD1 peptides in Ugandan HIV-infected patients with smear positive pulmonary tuberculosis: a pilot study. BMC Infect. Dis.8, 11 (2008).
  • Rangaka MX, Diwakar L, Seldon R et al. Clinical, immunological, and epidemiological importance of antituberculosis T cell responses in HIV-infected Africans. Clin. Infect. Dis.44(12), 1639–1646 (2007).
  • Goletti D, Vincenti D, Carrara S et al. Selected RD1 peptides for active tuberculosis diagnosis: comparison of a γ interferon whole-blood enzyme-linked immunosorbent assay and an enzyme-linked immunospot assay. Clin. Diagn. Lab. Immunol.12(11), 1311–1316 (2005).
  • Chegou NN, Walzl G, Bolliger CT, Diacon AH, van den Heuvel MM. Evaluation of adapted whole-blood interferon-γ release assays for the diagnosis of pleural tuberculosis. Respiration76(2), 131–138 (2008).
  • Baba K, Sornes S, Hoosen AA et al. Evaluation of immune responses in HIV infected patients with pleural tuberculosis by the QuantiFERON TB-Gold interferon-γ assay. BMC Infect. Dis.8, 35 (2008).
  • Wilkinson KA, Wilkinson RJ, Pathan A et al. Ex vivo characterization of early secretory antigenic target 6-specific T cells at sites of active disease in pleural tuberculosis. Clin. Infect. Dis.40(1), 184–187 (2005).
  • Losi M, Bossink A, Codecasa L et al. Use of a T-cell interferon γ release assay for the diagnosis of tuberculous pleurisy. Eur. Respir. J.30(6), 1173–1179 (2007).
  • Dheda K, Van-Zyl Smit RN, Sechi LA et al. Utility of quantitative T cell responses versus unstimulated IFN-γ for the diagnosis of pleural tuberculosis. Eur. Respir. J.34(5), 1118–1126 (2009).
  • Joshi R, Pai M. Can pleural tuberculosis be diagnosed using interferon-γ release assays? Respiration76(2), 128–130 (2008).
  • Ariga H, Kawabe Y, Nagai H et al. Diagnosis of active tuberculous serositis by antigen-specific interferon-γ response of cavity fluid cells. Clin. Infect. Dis.45(12), 1559–1567 (2007).
  • Jafari C, Ernst M, Kalsdorf B et al. Rapid diagnosis of smear-negative tuberculosis by bronchoalveolar lavage enzyme-linked immunospot. Am. J. Respir. Crit. Care Med.174(9), 1048–1054 (2006).
  • Jafari C, Ernst M, Strassburg A et al. Local immunodiagnosis of pulmonary tuberculosis by enzyme-linked immunospot. Eur. Respir. J.31(2), 261–265 (2008).
  • Murakami S, Takeno M, Oka H et al. Diagnosis of tuberculous meningitis due to detection of ESAT-6-specific γ interferon production in cerebrospinal fluid enzyme-linked immunospot assay. Clin. Vaccine Immunol.15(5), 897–899 (2008).
  • Masungi C, Temmerman S, Van Vooren JP et al. Differential T and B cell responses against Mycobacterium tuberculosis heparin-binding hemagglutinin adhesin in infected healthy individuals and patients with tuberculosis. J. Infect. Dis.185(4), 513–520 (2002).
  • Temmerman ST, Place S, Debrie AS, Locht C, Mascart F. Effector functions of heparin-binding hemagglutinin-specific CD8+ T lymphocytes in latent human tuberculosis. J. Infect. Dis.192(2), 226–232 (2005).
  • Hougardy JM, Schepers K, Place S et al. Heparin-binding-hemagglutinin-induced IFN-γ release as a diagnostic tool for latent tuberculosis. PLoS ONE2(10), e926 (2007).
  • Fu R, Wang C, Shi C et al. An improved whole-blood γ interferon assay based on the CFP21-MPT64 fusion protein. Clin. Vaccine Immunol.16(5), 686–691 (2009).
  • Savolainen L, Pusa L, Kim HJ, Sillanpaa H, Seppala I, Tuuminen T. Pilot study of diagnostic potential of the Mycobacterium tuberculosis recombinant HBHA protein in a vaccinated population in Finland. PLoS ONE3(9), e3272 (2008).
  • Ruhwald M, Petersen J, Kofoed K et al. Improving T-cell assays for the diagnosis of latent TB infection: potential of a diagnostic test based on IP-10. PLoS ONE3(8), e2858 (2008).
  • Ruhwald M, Bodmer T, Maier C et al. Evaluating the potential of IP-10 and MCP-2 as biomarkers for the diagnosis of tuberculosis. Eur. Respir. J.32(6), 1607–1615 (2008).
  • Whittaker E, Gordon A, Kampmann B. Is IP-10 a better biomarker for active and latent tuberculosis in children than IFNγ? PLoS ONE3(12), e3901 (2008).
  • Chegou NN, Black GF, Kidd M, van Helden PD, Walzl G. Host markers in Quantiferon supernatants differentiate active TB from latent TB infection: preliminary report. BMC Pulm. Med.9(1), 21 (2009).
  • Goletti D, Raja A, Ahamed Kabeer BS et al. IFN-γ, but not IP-10, MCP-2 or IL-2 response to RD1 selected peptides associates to active tuberculosis. J. Infect.61(2), 133–143 (2010).
  • Goletti D, Raja A, Syed Ahamed KB et al. Is IP-10 an accurate marker for detecting M. tuberculosis-specific response in HIV-infected persons? PLoS ONE5(9), e12577 (2010).
  • Diacon AH, Van de Wal BW, Wyser C et al. Diagnostic tools in tuberculous pleurisy: a direct comparative study. Eur. Respir. J.22(4), 589–591 (2003).
  • Greco S, Girardi E, Masciangelo R, Capoccetta GB, Saltini C. Adenosine deaminase and interferon γ measurements for the diagnosis of tuberculous pleurisy: a meta-analysis. Int. J. Tuberc. Lung Dis.7(8), 777–786 (2003).
  • Baba K, Hoosen AA, Langeland N, Dyrhol-Riise AM. Adenosine deaminase activity is a sensitive marker for the diagnosis of tuberculous pleuritis in patients with very low CD4 counts. PLoS ONE3(7), e2788 (2008).
  • Jiang J, Shi HZ, Liang QL, Qin SM, Qin XJ. Diagnostic value of interferon-γ in tuberculous pleurisy: a metaanalysis. Chest131(4), 1133–1141 (2007).
  • Aoe K, Hiraki A, Murakami T et al. Diagnostic significance of interferon-γ in tuberculous pleural effusions. Chest123(3), 740–744 (2003).
  • Hiraki A, Aoe K, Eda R et al. Comparison of six biological markers for the diagnosis of tuberculous pleuritis. Chest125(3), 987–989 (2004).
  • Krenke R, Korczynski P. Use of pleural fluid levels of adenosine deaminase and interferon γ in the diagnosis of tuberculous pleuritis. Curr. Opin. Pulm. Med.16(4), 367–375 (2010).
  • Djoba Siawaya JF, Chegou NN, van den Heuvel MM et al. Differential cytokine/chemokines and KL-6 profiles in patients with different forms of tuberculosis. Cytokine47(2), 132–136 (2009).
  • Demir T, Yalcinoz C, Keskinel I, Demiroz F, Yildirim N. sICAM-1 as a serum marker in the diagnosis and follow-up of treatment of pulmonary tuberculosis. Int. J. Tuberc. Lung Dis.6(2), 155–159 (2002).
  • Fuchs D, Hausen A, Kofler M, Kosanowski H, Reibnegger G, Wachter H. Neopterin as an index of immune response in patients with tuberculosis. Lung162(1), 337–346 (1984).
  • Cannas A, Calvo L, Chiacchio T et al. IP-10 detection in urine is associated with lung diseases. BMC Infect. Dis.10, 333 (2010).
  • Singh M, Espitia C. Immunological diagnosis. In: Tuberculosis 2007: From Basic Science to Patient Care. Palomino JC, Leao SC, Ritacco V (Eds). BourcillierKamps.com, 425–440 (2007)
  • Abebe F, Holm-Hansen C, Wiker HG, Bjune G. Progress in serodiagnosis of Mycobacterium tuberculosis infection. Scand. J. Immunol.66(2–3), 176–191 (2007).
  • Steingart KR, Dendukuri N, Henry M et al. Performance of purified antigens for serodiagnosis of pulmonary tuberculosis: a meta-analysis. Clin. Vaccine Immunol.16(2), 260–276 (2009).
  • Verma RK, Jain A. Antibodies to mycobacterial antigens for diagnosis of tuberculosis. FEMS Immunol. Med. Microbiol.51(3), 453–461 (2007).
  • Steingart KR, Henry M, Laal S et al. Commercial serological antibody detection tests for the diagnosis of pulmonary tuberculosis: a systematic review. PLoS Med.4(6), e202 (2007).
  • Steingart KR, Ramsay A, Pai M. Commercial serological tests for the diagnosis of tuberculosis: do they work? Future Microbiol.2, 355–359 (2007).
  • Ireton GC, Greenwald R, Liang H, Esfandiari J, Lyashchenko KP, Reed SG. Identification of Mycobacterium tuberculosis antigens of high serodiagnostic value. Clin. Vaccine Immunol.17(10), 1539–1547 (2010).
  • Mudaliar AV, Kashyap RS, Purohit HJ, Taori GM, Daginawala HF. Detection of 65 kD heat shock protein in cerebrospinal fluid of tuberculous meningitis patients. BMC Neurol.6, 34 (2006).
  • Rajan AN, Kashyap RS, Purohit HJ, Taori GM, Daginawala HF. Serodiagnosis of tuberculosis based on the analysis of the 65 kD heat shock protein of Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis.11(7), 792–797 (2007).
  • Weldingh K, Rosenkrands I, Okkels LM, Doherty TM, Andersen P. Assessing the serodiagnostic potential of 35 Mycobacterium tuberculosis proteins and identification of four novel serological antigens. J. Clin. Microbiol.43(1), 57–65 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.