512
Views
25
CrossRef citations to date
0
Altmetric
Review

Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update

&
Pages 443-455 | Published online: 10 Jan 2014

References

  • Taubenberger JK, Morens DM. Influenza: the once and future pandemic. Public Health Rep.125(Suppl. 3), 16–26 (2010).
  • Bouvier NM, Palese P. The biology of influenza viruses. Vaccine26(Suppl. 4), D49–D53 (2008).
  • Dugan VG, Chen R, Spiro DJ et al. The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog.4(5), e1000076 (2008).
  • Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol. Rev.56(1), 152–179 (1992).
  • Alexander DJ. Avian influenza viruses and human health. Dev. Biol. (Basel)124, 77–84 (2006).
  • Kalthoff D, Globig A, Beer M. (Highly pathogenic) avian influenza as a zoonotic agent. Vet. Microbiol.140(3–4), 237–245 (2010).
  • Malik Peiris JS. Avian influenza viruses in humans. Rev. Sci. Tech.28(1), 161–173 (2009).
  • Huang AS, Palma EL, Hewlett N, Roizman B. Pseudotype formation between enveloped RNA and DNA viruses. Nature252(5485), 743–745 (1974).
  • Rubin H. Genetic control of cellular susceptibility to pseudotypes of rous sarcoma virus. Virology26, 270–276 (1965).
  • Zavada J, Rosenbergova M. Phenotypic mixing of vesicular stomatitis virus with fowl plague virus. Acta. Virol.16(2), 103–114 (1972).
  • Frecha C, Szecsi J, Cosset FL, Verhoeyen E. Strategies for targeting lentiviral vectors. Curr. Gene Ther.8(6), 449–460 (2008).
  • Verhoeyen E, Cosset FL. Engineering the surface glycoproteins of lentiviral vectors for targeted gene transfer. Cold Spring Harb. Protoc. DOI:10.1101/pdb.top59 (2009) (Epub ahead of print).
  • Bright RA, Carter DM, Crevar CJ et al. Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS ONE3(1), e1501 (2008).
  • Ross TM, Mahmood K, Crevar CJ, Schneider-Ohrum K, Heaton PM, Bright RA. A trivalent virus-like particle vaccine elicits protective immune responses against seasonal influenza strains in mice and ferrets. PLoS ONE4(6), e6032 (2009).
  • Wu Q, Fang L, Wu X et al. A pseudotype baculovirus-mediated vaccine confers protective immunity against lethal challenge with H5N1 avian influenza virus in mice and chickens. Mol. Immunol.46(11–12), 2210–2217 (2009).
  • Dong J, Roth MG, Hunter E. A chimeric avian retrovirus containing the influenza virus hemagglutinin gene has an expanded host range. J. Virol.66(12), 7374–7382 (1992).
  • Baum C, Schambach A, Bohne J, Galla M. Retrovirus vectors: toward the plentivirus? Mol. Ther.13(6), 1050–1063 (2006).
  • McKay T, Patel M, Pickles RJ, Johnson LG, Olsen JC. Influenza M2 envelope protein augments avian influenza hemagglutinin pseudotyping of lentiviral vectors. Gene Ther.13(8), 715–724 (2006).
  • Oh S, Selleck P, Temperton NJ et al. Neutralizing monoclonal antibodies to different clades of Influenza A H5N1 viruses. J. Virol. Methods157(2), 161–167 (2009).
  • Su CY, Wang SY, Shie JJ et al. In vitro evaluation of neuraminidase inhibitors using the neuraminidase-dependent release assay of hemagglutinin-pseudotyped viruses. Antiviral Res.79(3), 199–205 (2008).
  • Szecsi J, Boson B, Johnsson P et al. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virol. J.3, 70 (2006).
  • Wang SY, Su CY, Lin M et al. HA-pseudotyped retroviral vectors for influenza antagonist screening. J. Biomol. Screen.14(3), 294–302 (2009).
  • Hanika A, Larisch B, Steinmann E, Schwegmann-Wessels C, Herrler G, Zimmer G. Use of influenza C virus glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes. J. Gen. Virol.86(Pt 5), 1455–1465 (2005).
  • Ito H, Watanabe S, Takada A, Kawaoka Y. Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J. Virol.75(3), 1576–1580 (2001).
  • Matsuno K, Kishida N, Usami K et al. Different potential of C-type lectin-mediated entry between Marburg virus strains. J. Virol.84(10), 5140–5147 (2010).
  • Roth MG, Compans RW. Delayed appearance of pseudotypes between vesicular stomatitis virus influenza virus during mixed infection of MDCK cells. J. Virol.40(3), 848–860 (1981).
  • Bupp K, Gonzalez-Scarano F. Pseudotype formation with La Crosse virus glycoproteins. J. Gen. Virol.79(Pt 4), 667–671 (1998).
  • Mayrhofer J, Coulibaly S, Hessel A et al. Nonreplicating vaccinia virus vectors expressing the H5 influenza virus hemagglutinin produced in modified Vero cells induce robust protection. J. Virol.83(10), 5192–5203 (2009).
  • Briggs JA, Wilk T, Fuller SD. Do lipid rafts mediate virus assembly and pseudotyping? J. Gen. Virol.84(Pt 4), 757–768 (2003).
  • Pickl WF, Pimentel-Muinos FX, Seed B. Lipid rafts and pseudotyping. J. Virol.75(15), 7175–7183 (2001).
  • Sandrin V, Cosset FL. Intracellular versus cell surface assembly of retroviral pseudotypes is determined by the cellular localization of the viral glycoprotein, its capacity to interact with Gag, and the expression of the Nef protein. J. Biol. Chem.281(1), 528–542 (2006).
  • Ali A, Avalos RT, Ponimaskin E, Nayak DP. Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J. Virol.74(18), 8709–8719 (2000).
  • Chen BJ, Leser GP, Jackson D, Lamb RA. The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J. Virol.82(20), 10059–10070 (2008).
  • Nayak DP, Balogun RA, Yamada H, Zhou ZH, Barman S. Influenza virus morphogenesis and budding. Virus Res.143(2), 147–161 (2009).
  • Radyukhin V, Fedorova N, Ksenofontov A, Serebryakova M, Baratova L. Cold co-extraction of hemagglutinin and matrix M1 protein from influenza virus A by a combination of non-ionic detergents allows for visualization of the raft-like nature of the virus envelope. Arch. Virol.153(10), 1977–1980 (2008).
  • Hammarstedt M, Garoff H. Passive and active inclusion of host proteins in human immunodeficiency virus type 1 gag particles during budding at the plasma membrane. J. Virol.78(11), 5686–5697 (2004).
  • Kueng HJ, Schmetterer KG, Pickl WF. Lipid rafts, pseudotyping, and virus-like particles: relevance of a novel, configurable, and modular antigen-presenting platform. Int. Arch. Allergy Immunol.154(2), 89–110 (2010).
  • Leung K, Kim JO, Ganesh L, Kabat J, Schwartz O, Nabel GJ. HIV-1 assembly: viral glycoproteins segregate quantally to lipid rafts that associate individually with HIV-1 capsids and virions. Cell Host Microbe3(5), 285–292 (2008).
  • Yue L, Shang L, Hunter E. Truncation of the membrane-spanning domain of human immunodeficiency virus type 1 envelope glycoprotein defines elements required for fusion, incorporation, and infectivity. J. Virol.83(22), 11588–11598 (2009).
  • Bischof D, Cornetta K. Flexibility in cell targeting by pseudotyping lentiviral vectors. Methods Mol. Biol.614, 53–68 (2010).
  • Kim SH, Jang SI, Park CY, You JC. Investigation of requirements for efficient gene delivery using the HIV-1 based lentiviral transduction system. Biochem. Biophys. Res. Commun.383(2), 192–197 (2009).
  • Lewis P, Hensel M, Emerman M. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J.11(8), 3053–3058 (1992).
  • Lewis PF, Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol.68(1), 510–516 (1994).
  • Hatziioannou T, Valsesia-Wittmann S, Russell SJ, Cosset FL. Incorporation of fowl plague virus hemagglutinin into murine leukemia virus particles and analysis of the infectivity of the pseudotyped retroviruses. J. Virol.72(6), 5313–5317 (1998).
  • Temperton NJ, Hoschler K, Major D et al. A sensitive retroviral pseudotype assay for influenza H5N1-neutralizing antibodies. Influenza Other Respi. Viruses1(3), 105–112 (2007).
  • Barde I, Salmon P, Trono D. Production and titration of lentiviral vectors. Curr. Protoc. Neurosci. Chapter 4, Unit 4 21 (2010).
  • Temperton N, Wright E. Retroviral pseudotypes. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd., Chichester, UK. DOI: 10.1002/9780470015902.a0021549 (2009).
  • Baker M. Biochemistry. Hidden code in the protein code. Nat. Methods7(11), 874 (2010).
  • Ohuchi M, Cramer A, Vey M, Ohuchi R, Garten W, Klenk HD. Rescue of vector-expressed fowl plague virus hemagglutinin in biologically active form by acidotropic agents and coexpressed M2 protein. J. Virol.68(2), 920–926 (1994).
  • Corti D, Suguitan AL Jr, Pinna D et al. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J. Clin. Invest.120(5), 1663–1673 (2010).
  • Lin AH, Cannon PM. Use of pseudotyped retroviral vectors to analyze the receptor-binding pocket of hemagglutinin from a pathogenic avian influenza A virus (H7 subtype). Virus Res.83(1–2), 43–56 (2002).
  • Szecsi J, Gabriel G, Edfeldt G, Michelet M, Klenk HD, Cosset FL. DNA vaccination with a single-plasmid construct coding for viruslike particles protects mice against infection with a highly pathogenic avian influenza A virus. J. Infect. Dis.200(2), 181–190 (2009).
  • Bosch V, Kramer B, Pfeiffer T, Starck L, Steinhauer DA. Inhibition of release of lentivirus particles with incorporated human influenza virus haemagglutinin by binding to sialic acid-containing cellular receptors. J. Gen. Virol.82(Pt 10), 2485–2494 (2001).
  • Ao Z, Patel A, Tran K et al. Characterization of a trypsin-dependent avian influenza H5N1-pseudotyped HIV vector system for high throughput screening of inhibitory molecules. Antiviral Res.79(1), 12–18 (2008).
  • Wang W, Castelan-Vega JA, Jimenez-Alberto A, Vassell R, Ye Z, Weiss CD. A mutation in the receptor binding site enhances infectivity of 2009 H1N1 influenza hemagglutinin pseudotypes without changing antigenicity. Virology407(2), 374–380 (2010).
  • Thorne N, Inglese J, Auld DS. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem. Biol.17(6), 646–657 (2010).
  • Olesen CE, Yan YX, Liu B et al. Novel methods for chemiluminescent detection of reporter enzymes. Methods Enzymol.326, 175–202 (2000).
  • Karolewski BA, Watson DJ, Parente MK, Wolfe JH. Comparison of transfection conditions for a lentivirus vector produced in large volumes. Hum. Gene Ther.14(14), 1287–1296 (2003).
  • Tom R, Bisson L, Durocher Y. Transfection of HEK293-EBNA1 cells in suspension with linear PEI for production of recombinant proteins. Cold Spring Harb. Protoc. DOI:10.1101/pdb.prot4977 (2008).
  • Jordan M, Schallhorn A, Wurm FM. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res.24(4), 596–601 (1996).
  • Salmon P, Trono D. Production and titration of lentiviral vectors. Curr. Protoc. Hum. Genet.12(12), 10 (2007).
  • Bertram S, Glowacka I, Steffen I, Kuhl A, Pohlmann S. Novel insights into proteolytic cleavage of influenza virus hemagglutinin. Rev. Med. Virol.20(5), 298–310 (2010).
  • Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem.69, 531–569 (2000).
  • Bottcher-Friebertshauser E, Freuer C, Sielaff F et al. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. J. Virol.84(11), 5605–5614 (2010).
  • Wang W, Butler EN, Veguilla V et al. Establishment of retroviral pseudotypes with influenza hemagglutinins from H1, H3, and H5 subtypes for sensitive and specific detection of neutralizing antibodies. J. Virol. Methods153(2), 111–119 (2008).
  • Bottcher E, Freuer C, Steinmetzer T, Klenk HD, Garten W. MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition. Vaccine27(45), 6324–6329 (2009).
  • Kutner RH, Puthli S, Marino MP, Reiser J. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography. BMC Biotechnol.9, 10 (2009).
  • Kutner RH, Zhang XY, Reiser J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protoc.4(4), 495–505 (2009).
  • Olsen JC, Sechelski J. Use of sodium butyrate to enhance production of retroviral vectors expressing CFTR cDNA. Hum. Gene Ther.6(9), 1195–1202 (1995).
  • Ellis BL, Potts PR, Porteus M. Creating higher titer lentivirus using caffeine. Hum. Gene Ther.22(1), 93–100 (2010).
  • Godbey WT, Wu KK, Hirasaki GJ, Mikos AG. Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther.6(8), 1380–1388 (1999).
  • Ulasov AV, Khramtsov YV, Trusov GA, Rosenkranz AA, Sverdlov ED, Sobolev AS. Properties of PEI-based polyplex nanoparticles that correlate with their transfection efficacy. Mol. Ther.1, 103–112 (2010).
  • Yue Y, Jin F, Deng R et al. Revisit complexation between DNA and polyethylenimine – effect of uncomplexed chains free in the solution mixture on gene transfection. J. Control. Release DOI:10.1016/j.jconrel.2010.10.028 (2010) (Epub ahead of print).
  • Ren Y, Jiang X, Pan D, Mao HQ. Charge density and molecular weight of polyphosphoramidate gene carrier are key parameters influencing its DNA compaction ability and transfection efficiency. Biomacromolecules11(12), 3432–3439 (2010).
  • Amorij JP, Meulenaar J, Hinrichs WL et al. Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine25(35), 6447–6457 (2007).
  • Wei CJ, Boyington JC, Dai K et al. Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Sci. Transl. Med.2(24), 24ra21 (2010).
  • Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R. Comparison of lentiviral vector titration methods. BMC Biotechnol.6, 34 (2006).
  • Sastry L, Johnson T, Hobson MJ, Smucker B, Cornetta K. Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther.9(17), 1155–1162 (2002).
  • Transfiguracion J, Coelho H, Kamen A. High-performance liquid chromatographic total particles quantification of retroviral vectors pseudotyped with vesicular stomatitis virus-G glycoprotein. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.813(1–2), 167–173 (2004).
  • Nefkens I, Garcia JM, Ling CS et al. Hemagglutinin pseudotyped lentiviral particles: characterization of a new method for avian H5N1 influenza sero-diagnosis. J. Clin. Virol.39(1), 27–33 (2007).
  • Wang W, Xie H, Ye Z, Vassell R, Weiss CD. Characterization of lentiviral pseudotypes with influenza H5N1 hemagglutinin and their performance in neutralization assays. J. Virol. Methods165(2), 305–310 (2010).
  • Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch. Immunol. Ther. Exp. (Warsz.)58(2), 107–119 (2010).
  • Matrai J, Chuah MK, VandenDriessche T. Recent advances in lentiviral vector development and applications. Mol. Ther.18(3), 477–490 (2010).
  • Duisit G, Conrath H, Saleun S et al. Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol. Ther.6(4), 446–454 (2002).
  • Mohan S, McAtamney S, Haselhorst T, von Itzstein M, Pinto BM. Carbocycles related to oseltamivir as influenza virus group-1-specific neuraminidase inhibitors. Binding to N1 enzymes in the context of virus-like particles. J. Med. Chem.53(20), 7377–7391 (2010).
  • Song G, Yang S, Zhang W et al. Discovery of the first series of small molecule H5N1 entry inhibitors. J. Med. Chem.52(23), 7368–7371 (2009).
  • Suzuki Y, Ito T, Suzuki T et al. Sialic acid species as a determinant of the host range of influenza A viruses. J. Virol.74(24), 11825–11831 (2000).
  • Viswanathan K, Chandrasekaran A, Srinivasan A, Raman R, Sasisekharan V, Sasisekharan R. Glycans as receptors for influenza pathogenesis. Glycoconj. J.27(6), 561–570 (2010).
  • Zhang H. Tissue and host tropism of influenza viruses: importance of quantitative analysis. Sci. China C Life Sci.52(12), 1101–1110 (2009).
  • Suzuki Y. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol. Pharm. Bull.28(3), 399–408 (2005).
  • Nicholls JM, Chan RW, Russell RJ, Air GM, Peiris JS. Evolving complexities of influenza virus and its receptors. Trends Microbiol.16(4), 149–157 (2008).
  • Joo KI, Wang P. Visualization of targeted transduction by engineered lentiviral vectors. Gene Ther.15(20), 1384–1396 (2008).
  • Muthumani K, Montaner LJ, Ayyavoo V, Weiner DB. Vpr-GFP virion particle identifies HIV-infected targets and preserves HIV-1Vpr function in macrophages and T-cells. DNA Cell. Biol.19(3), 179–188 (2000).
  • Haselhorst T, Garcia JM, Islam T et al. Avian influenza H5-containing virus-like particles (VLPs): host-cell receptor specificity by STD NMR spectroscopy. Angew. Chem. Int. Ed. Engl.47(10), 1910–1912 (2008).
  • Su Y, Zhu X, Wang Y, Wu M, Tien P. Evaluation of Glu11 and Gly8 of the H5N1 influenza hemagglutinin fusion peptide in membrane fusion using pseudotype virus and reverse genetics. Arch. Virol.153(2), 247–257 (2008).
  • Huang IC, Li W, Sui J, Marasco W, Choe H, Farzan M. Influenza A virus neuraminidase limits viral superinfection. J. Virol.82(10), 4834–4843 (2008).
  • Su B, Wurtzer S, Rameix-Welti MA et al. Enhancement of the influenza A hemagglutinin (HA)-mediated cell–cell fusion and virus entry by the viral neuraminidase (NA). PLoS ONE4(12), e8495 (2009).
  • Joo KI, Tai A, Lee CL, Wong C, Wang P. Imaging multiple intermediates of single-virus membrane fusion mediated by distinct fusion proteins. Microsc. Res. Tech.73(9), 886–900 (2010).
  • Zhang Y, Lin X, Wang G et al. Neuraminidase and hemagglutinin matching patterns of a highly pathogenic avian and two pandemic H1N1 influenza A viruses. PLoS ONE5(2), e9167 (2010).
  • Zhang Y, Lin X, Zhang F et al. Hemagglutinin and neuraminidase matching patterns of two influenza A virus strains related to the 1918 and 2009 global pandemics. Biochem. Biophys. Res. Commun.387(2), 405–408 (2009).
  • Du N, Zhou J, Lin X et al. Differential activation of NK cells by influenza A pseudotype H5N1 and 1918 and 2009 pandemic H1N1 viruses. J. Virol.84(15), 7822–7831 (2010).
  • Ho JW, Hershkovitz O, Peiris M et al. H5-type influenza virus hemagglutinin is functionally recognized by the natural killer-activating receptor NKp44. J. Virol.82(4), 2028–2032 (2008).
  • Zhang S, Xiao L, Zhou H et al. Generation and characterization of an H5N1 avian influenza virus hemagglutinin glycoprotein pseudotyped lentivirus. J. Virol. Methods154(1–2), 99–103 (2008).
  • Haynes JR, Dokken L, Wiley JA et al. Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine27(4), 530–541 (2009).
  • Haynes JR. Influenza virus-like particle vaccines. Expert Rev. Vaccines8(4), 435–445 (2009).
  • Du L, Zhao G, Zhang X et al. Development of a safe and convenient neutralization assay for rapid screening of influenza HA-specific neutralizing monoclonal antibodies. Biochem. Biophys. Res. Commun.397(3), 580–585 (2010).
  • Alberini I, Del Tordello E, Fasolo A et al. Pseudoparticle neutralization is a reliable assay to measure immunity and cross-reactivity to H5N1 influenza viruses. Vaccine27(43), 5998–6003 (2009).
  • Garcia JM, Pepin S, Lagarde N et al. Heterosubtype neutralizing responses to influenza A (H5N1) viruses are mediated by antibodies to virus haemagglutinin. PLoS ONE4(11), e7918 (2009).
  • Labrosse B, Tourdjman M, Porcher R et al. Detection of extensive cross-neutralization between pandemic and seasonal A/H1N1 influenza viruses using a pseudotype neutralization assay. PLoS ONE5(6), e11036 (2010).
  • Chen MW, Cheng TJ, Huang Y et al. A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc. Natl Acad. Sci. USA105(36), 13538–13543 (2008).
  • Rao S, Kong WP, Wei CJ et al. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice. PLoS ONE3(6), e2432 (2008).
  • Rao SS, Kong WP, Wei CJ et al. Comparative efficacy of hemagglutinin, nucleoprotein, and matrix 2 protein gene-based vaccination against H5N1 influenza in mouse and ferret. PLoS ONE5(3), e9812 (2010).
  • Shen S, Mahadevappa G, Oh HL et al. Comparing the antibody responses against recombinant hemagglutinin proteins of avian influenza A (H5N1) virus expressed in insect cells and bacteria. J. Med. Virol.80(11), 1972–1983 (2008).
  • Tsai C, Caillet C, Hu H et al. Measurement of neutralizing antibody responses against H5N1 clades in immunized mice and ferrets using pseudotypes expressing influenza hemagglutinin and neuraminidase. Vaccine27(48), 6777–6790 (2009).
  • Wei CJ, Boyington JC, McTamney PM et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science329(5995), 1060–1064 (2010).
  • Wei CJ, Xu L, Kong WP et al. Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. J. Virol.82(13), 6200–6208 (2008).
  • Yang ZY, Wei CJ, Kong WP et al. Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science317(5839), 825–828 (2007).
  • Oh HL, Akerstrom S, Shen S et al. An antibody against a novel and conserved epitope in the hemagglutinin 1 subunit neutralizes numerous H5N1 influenza viruses. J. Virol.84(16), 8275–8286 (2010).
  • Fooks AR, Johnson N, Freuling CM et al. Emerging technologies for the detection of rabies virus: challenges and hopes in the 21st century. PLoS Negl. Trop. Dis.3(9), e530 (2009).
  • Wright E, Hayman DT, Vaughan A et al. Virus neutralising activity of African fruit bat (Eidolon helvum) sera against emerging lyssaviruses. Virology408(2), 183–189 (2010).
  • Wright E, McNabb S, Goddard T et al. A robust lentiviral pseudotype neutralisation assay for in-field serosurveillance of rabies and lyssaviruses in Africa. Vaccine27(51), 7178–7186 (2009).
  • Wright E, Temperton NJ, Marston DA, McElhinney LM, Fooks AR, Weiss RA. Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison. J. Gen. Virol.89(Pt 9), 2204–2213 (2008).
  • Chan SY, Speck RF, Ma MC, Goldsmith MA. Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J. Virol.74(10), 4933–4937 (2000).
  • Wool-Lewis RJ, Bates P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J. Virol.72(4), 3155–3160 (1998).
  • Ogino M, Ebihara H, Lee BH et al. Use of vesicular stomatitis virus pseudotypes bearing hantaan or seoul virus envelope proteins in a rapid and safe neutralization test. Clin. Diagn. Lab. Immunol.10(1), 154–160 (2003).
  • Tamin A, Harcourt BH, Lo MK et al. Development of a neutralization assay for Nipah virus using pseudotype particles. J. Virol. Methods160(1–2), 1–6 (2009).
  • Fukushi S, Mizutani T, Saijo M et al. Evaluation of a novel vesicular stomatitis virus pseudotype-based assay for detection of neutralizing antibody responses to SARS-CoV. J. Med. Virol.78(12), 1509–1512 (2006).
  • Temperton NJ, Chan PK, Simmons G et al. Longitudinally profiling neutralizing antibody response to SARS coronavirus with pseudotypes. Emerg. Infect. Dis.11(3), 411–416 (2005).
  • Garcia JM, Lagarde N, Ma ES, de Jong MD, Peiris JS. Optimization and evaluation of an influenza A (H5) pseudotyped lentiviral particle-based serological assay. J. Clin. Virol.47(1), 29–33 (2010).
  • Kong WP, Hood C, Yang ZY et al. Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination. Proc. Natl Acad. Sci. USA103(43), 15987–15991 (2006).
  • Capecchi B, Fasolo A, Albertini I et al. Use of pseudotyped particles expressing Influenza A/Vietnam/1194/2004 hemagglutinin in neutralization assays. In: Options for the Control of Influenza VI. Katz JM (Ed.). International Medical Press, London, UK, 303–305 (2008).
  • Oh DY, Barr IG, Mosse JA, Laurie KL. MDCK SIAT-1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells. J. Clin. Microbiol.46(7), 2189–2194 (2008).
  • Buchy P, Vong S, Chu S et al. Kinetics of neutralizing antibodies in patients naturally infected by H5N1 virus. PLoS ONE5(5), e10864 (2010).
  • Cavailler P, Chu S, Ly S et al. Seroprevalence of anti-H5 antibody in rural Cambodia, 2007. J. Clin. Virol.48(2), 123–126 (2010).
  • Inoue E, Wang X, Osawa Y, Okazaki K. Full genomic amplification and subtyping of influenza A virus using a single set of universal primers. Microbiol. Immunol.54(3), 129–134 (2010).
  • Stech J, Stech O, Herwig A et al. Rapid and reliable universal cloning of influenza A virus genes by target-primed plasmid amplification. Nucleic Acids Res.36(21), e139 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.