132
Views
47
CrossRef citations to date
0
Altmetric
Review

Progress and challenges in the discovery of macrofilaricidal drugs

&
Pages 681-695 | Published online: 10 Jan 2014

References

  • Ottesen EA, Hooper PJ, Bradley M, Biswas G. The Global Programme to Eliminate Lymphatic Filariasis: health impact after 8 years. PLoS Negl. Trop. Dis.2, e317 (2008).
  • Boatin BA, Richards FO Jr. Control of onchocerciasis. Adv. Parasitol.61, 349–394 (2006).
  • Thylefors B. The Mectizan Donation Program. Ann. Trop. Med. Parasitol.102(Suppl. 1), 39–44 (2008).
  • McCall JW, Genchi C, Kramer LH, Guerrero J, Venco L. Heartworm disease in animals and humans. Adv. Parasitol.66, 193–285 (2008).
  • Bowman DD, Atkins CE. Heartworm biology, treatment and control. Vet. Clin. North Am. Small Animal Pract.39, 1127–1158 (2009).
  • Geary TG. Ivermectin 20 years on: maturation of a wonder drug. Trends Parasitol.21, 530–532 (2005).
  • Schaeffer JM, Haines HW. Avermectin binding in Caenorhabditis elegans. A two-state model for the avermectin binding site. Biochem. Pharmacol.38, 2329–2338 (1989).
  • Cheeseman CL, Delany NS, Woods DJ, Wolstenholme AJ. High-affinity ivermectin binding to recombinant subunits of the Haemonchus contortus glutamate-gated chloride channel. Mol. Biochem. Parasitol.114(2), 161–168 (2001).
  • Geary TG, Moreno Y. Macrocyclic lactone anthelmintics: spectrum of activity and mechanism of action. Curr. Pharmaceut. Biotech. (2011) (In Press).
  • Dadzie Y, Neira M, Hopkins D. Final report of the Conference on the Eradicability of Onchocerciasis. Filaria J.2, 2 (2003).
  • Bockarie MJ, Deb RM. Elimination of lymphatic filariasis: do we have the drugs to complete the job? Curr. Opin. Infect. Dis.23, 617–620 (2010).
  • Cupp EW, Sauerbrey M, Richards F. Elimination of human onchocerciasis: history of progress and current feasibility using ivermectin (Mectizan) monotherapy. Acta Trop. DOI: 10.1016/j.actatropica.2010.08.009 (2010) (Epub ahead of print).
  • Maizels RM, Denham DA. Diethylcarbamazine (DEC): immunopharmacological interactions of an anti-filarial drug. Parasitology105(Suppl.), S49–S60 (1992).
  • Mackenzie CD, Geary TG, Gerlach JA. Possible pathogenic pathways in the adverse clinical events seen following ivermectin administration to onchocerciasis patients. Filaria J.2(Suppl. 1), S5 (2003).
  • Moreno Y, Nabhan JF, Solomon J, Mackenzie CD, Geary TG. Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi. Proc. Natl Acad. Sci. USA107, 20120–20125 (2010).
  • Geary TG, Woo K, McCarthy JS et al. Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int. J. Parasitol.40, 1–13 (2010).
  • Dreyer G, Coutinho A, Miranda D et al. Treatment of bancroftian filariasis in Recife, Brazil: a two-year comparative study of the efficacy of single treatments with ivermectin or diethylcarbamazine. Trans. R. Soc. Trop. Med. Hyg.89, 98–102 (1995).
  • Dreyer G, Addiss D, Noroes J, Amaral F, Rocha A, Coutinho A. Ultrasonographic assessment of the adulticidal efficacy of repeat high-dose ivermectin in bancroftian filariasis. Trop. Med. Int. Heath1(4), 427–432 (1996).
  • Duke BOL, Pacqué MC, Muñoz B, Greene BM, Taylor H.R. Viability of adult Onchocerca volvulus after six 2-weekly doses of ivermectin. Bull. World Health Organ.69, 163–168 (1991).
  • Pfarr KM, Hoerauf AM. Antibiotics which target the Wolbachia symbionts of filarial parasites – a new strategy for control of filariasis and amelioration of pathology. Mini Rev. Med. Chem.6, 203–210 (2006).
  • Boussinesq M, Gardon J, Gardon-Wendel N, Chippaux JP. Clinical picture, epidemiology and outcome of Loa-associated serious adverse events related to mass ivermectin treatment of onchocerciasis in Cameroon. Filaria J.2(Suppl. 1), S4 (2003).
  • Twum-Danso NA. Loa loa encephalopathy temporally related to ivermectin administration reported from onchocerciasis mass treatment programs from 1989–2001: implications for the future. Filaria J.2(Suppl. 1), S7 (2003).
  • Bourguinat C, Kamgno J, Boussinesq M, Mackenzie C, Prichard R, Geary T. Analysis of the mdr-1 gene in patients co-infected with Onchocerca volvulus and Loa loa who experienced a post-ivermectin serious adverse event. Am. J. Trop. Med. Hyg.83, 28–32 (2010).
  • Osei-Atweneboana MY, Eng JK, Boakye DA, Gyapong JO, Prichard RK. Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet369, 2021–2029 (2007).
  • Churcher TS, Pion SD, Osei-Atweneboana MY et al. Identifying suboptimal responses to ivermectin in the treatment of River Blindness. Proc. Natl Acad. Sci. USA106, 16716–16721 (2009).
  • Bourguinat C, Ardelli BF, Pion SD et al. P-glycoprotein-like protein, a possible genetic marker for ivermectin resistance selection in Onchocerca volvulus. Mol. Biochem. Parasitol.158, 101–111 (2008).
  • Hampshire VA. Evaluation of efficacy of heartworm preventive products at the FDA. Vet. Parasitol.133, 191–195 (2005).
  • Bourguinat C, Keller K, Blagburn B, Schenker R, Geary TG, Prichard RK. Correlation between loss of efficacy of macrocyclic lactone heartworm preventatives and P-glycoprotein genotype. Vet. Parasitol.176, 374–381 (2011).
  • Orme M, Awadzi K, Edwards G, Breckenridge AM. Drug treatment of onchocerciasis. Quart. J. Med.66, 195–201 (1988).
  • Awadzi K. Clinical picture and outcome of Serious Adverse Events in the treatment of onchocerciasis. Filaria J.2(Suppl. 1), S6 (2003).
  • Hoerauf A. Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr. Opin. Infect. Dis.21, 673–681 (2008).
  • Turner JD, Tendongfor N, Esum M et al. Macrofilaricidal activity after doxycycline only treatment of Onchocerca volvulus in an area of Loa loa co-endemicity: a randomized controlled trial. PLoS Negl. Trop. Dis.4, e660 (2010).
  • Bazzochi C, Mortarino M, Grandi G et al. Combined ivermectin and doxycycline treatment has microfilaricidal and adulticidal activity against Dirofilaria immitis in experimentally infected dogs. Int. J. Parasitol.38, 1401–1410 (2008).
  • Grandi G, Quintavalla C, Mavropoulou A et al. A combination of doxycycline and ivermectin is adulticidal in dogs with naturally acquired heartworm disease (Dirofilaria immitis). Vet. Parasitol.169, 347–351 (2010).
  • Wanji S, Tendongfor N, Nji N et al. Community-directed delivery of doxycycline for the treatment of onchocerciasis in areas of co-endemicity with loaisis in Cameroon. Parasit. Vectors2, 39 (2009).
  • McCall JW. The safety-net story about macrocyclic lactone heartworm preventatives: a review, an update and recommendations. Vet. Parasitol.133, 197–206 (2005).
  • Gyapong JO, Kumaraswami V, Biswas G, Ottesen EA. Treatment strategies underpinning the global programme to eliminate lymphatic filariasis. Expert Opin. Pharmacother.6, 179–200 (2005).
  • Taylor MJ, Hoerauf A, Bockarie M. Lymphatic filariasis and onchocerciasis. Lancet376, 1175–1185 (2010).
  • Supali T, Djuardi Y, Pfarr KM et al. Doxycycline treatment of Brugia malayi-infected persons reduces microfilaremia and adverse reactions after diethylcarbamazine and albendazole treatment. Clin. Infect. Dis.46, 1385–1393 (2008).
  • McCall JW, Genchi C, Kramer L et al. Heartworm and Wolbachia: therapeutic implications. Vet. Parasitol.158, 204–214 (2008).
  • Cotreau MM, Warren S, Ryan JL et al. The antiparasitic moxidectin: safety, tolerability, and pharmacokinetics in humans. J. Clin. Pharmacol.43, 1108–1115 (2003).
  • Lespine A, Martin S, Dupuy J et al. Interaction of macrocyclic lactones with P-glycoprotein: structure-affinity relationship. Eur. J. Pharm. Sci.30, 84–94 (2007).
  • Bronsvoort BM, Renz A, Tchakouté V, Tanya VN, Ekale D, Trees AJ. Repeated high doses of avermectins cause prolonged sterilisation, but do not kill, Onchocerca ochengi adult worms in African cattle. Filaria J.4, 4–8 (2005).
  • Conder GA, Campbell WC. Chemotherapy of nematode infections of veterinary importance, with special reference to drug resistance. Adv. Parasitol.35, 1–84 (1995).
  • Banks BJ, Bishop BF, Evans NA et al. Avermectins and flea control: structure-activity relationships and the selection of selamectin for development as an endectocide for companion animals. Bioorg. Med. Chem.8, 2017–2025 (2000).
  • Scherkenback J, Jeschke J, Harder A. PF1022A and related cyclodepsipeptides – a novel class of anthelmintics. Curr. Top. Med. Chem.2, 759–777 (2002).
  • Harder A, Schmitt-Wrede H-P, Krücken J et al. Cyclooctadepsipeptides – an anthelmintically active class of compounds exhibiting a novel mode of action. Int. J. Antimicrob. Agents22, 318–331 (2003).
  • von Samson-Himmelstjerna G, Harder A, Sangster NC, Coles GC. Efficacy of two cyclooctadepsipeptides, PF1022A and emodepside, against anthelmintic-resistant nematodes in sheep and cattle. Parasitology130, 343–347 (2005).
  • Jeschke P, Iinuma K, Harder A, Schindler M, Mirakami T. Influence of the cyclooctadepsipeptides PF1022A and PF1022E natural products on the design of semi-synthetic anthelmintics such as emodepside. Parasitol. Res.97(Suppl. 1), S11–S16 (2005).
  • Zahner H, Taubert A, Harder A, von Samson-Himmelstjerna G. Filaricidal efficacy of anthelmintically active cyclodepsipeptides. Int. J. Parasitol.31, 1515–1522 (2001).
  • Townson S, Freeman A, Harris A, Harder A. Activity of the cyclooctadepsipeptide emodepside against Onchocerca gutturosa, Onchocerca lienalis and Brugia pahangi. Am. J. Trop. Med. Hyg.73(Suppl.), 93 (2005).
  • Guest M, Bull K, Walker RJ et al. The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. Int. J. Parasitol.37, 1577–1588 (2007).
  • Horton J. Albendazole: a broad spectrum anthelminthic for treatment of individuals and populations. Curr. Opin. Infect. Dis.15, 599–608 (2002).
  • Mackenzie CD, Geary TG. Flubendazole, a potentially valuable macrofilaricide for lymphatic filariasis and onchocerciasis field programs. Expert Rev. Anti Infect. Ther.9(5), 497–501(2011).
  • Dominguez-Vasquez A, Taylor HR, Greene BM et al. Comparison of flubendazole and diethylcarbamazine in treatment of onchocerciasis. Lancet1(8317), 139–143 (1983).
  • Ceballos L, Elissondo M, Bruni SS, Denegri G, Alvarez L, Lanusse C. Flubendazole in cystic echinococcosis therapy: pharmaco-parasitological evaluation in mice. Parasitol. Int.58, 354–358 (2009).
  • Nianjun H, Cerepnalkoski L, Nwankwo JO et al. Induction of chromosomal aberrations, cytotoxicity, and morphological transformation in mammalian cells by the antiparasitic drug flubendazole and the antineoplastic drug harringtonine. Fund. Appl. Toxicol.22, 304–313 (1994).
  • Yoshimura H. Effect of oral dosing vehicles on the developmental toxicity of flubendazole in rats. Reprod. Toxicol.17, 377–385 (2003).
  • Spagnuolo PA, Hu, J, Hurren R et al. The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood115, 4824–4833 (2010).
  • Bronsvoort BM, Makepeace BL, Renz A et al. UMF-078: a modified flubendazole with potent macrofilaricidal activity against Onchocerca ochengi in African cattle. Parasit. Vectors1, 18 (2008).
  • Tellez-Giron E, Ramos MC, Dufour L et al. Treatment of neurocysticercosis with flubendazole. Am. J. Trop. Med. Hyg.33, 427–431 (1984).
  • Gavidia CM, Gonzalez AE, Barron EA et al. Evaluation of oxfendazole, praziquantel and albendazole against cystic echinococcosis: a randomized clinical trial in naturally infected sheep. PLoS Negl. Trop. Dis4, e616 (2010).
  • Anderson VR, Curram MP. Nitazoxanide: a review of its use in the treatment of gastrointestinal infections. Drugs67, 1947–1967 (2007).
  • Bacon JA, Ulrich RG, Davis JP et al. Comparative in vitro effects of closantel and selected β-ketoamide anthelmintics on a gastrointestinal nematode and vertebrate liver cells. J. Vet. Pharmacol. Ther.21, 190–198 (1998).
  • Rao RU, Huang Y, Fischer K, Fischer PU, Weil GJ. Brugia malayi: effects of nitazoxanide and tizoxanide on adult worms and microfilariae of filarial nematodes. Exp. Parasitol.121(1), 38–45 (2009).
  • Kaminsky R, Ducray P, Jung M et al. A new class of anthelmintics effective against drug-resistant nematodes. Nature452, 176–180 (2008).
  • Hosking BC, Kaminsky R, Sager H, Rolfe PF, Seewald W. A pooled analysis of the efficacy of monepantel, an amino-acetonitrile derivative, against gastrointestinal nematodes of sheep. Parasitol. Res.106, 529–532 (2010).
  • Rufener L, Keiser J, Kaminsky R, Mäser P, Nilsson D. Phylogenomics of ligand-gated ion channels predicts monepantel effect. PLoS-Pathogens9, e1001091 (2010).
  • Lee BH, Clothier MF, Dutton FE et al. Marcfortine and paraherquamide class of anthelmintics: discovery of PNU-141962. Curr. Top. Med. Chem.2, 779–793 (2002).
  • Little PR, Hodges A, Watson TG, Seed JA, Maeder SJ. Field efficacy and safety of an oral formulation of the novel combination anthelmintic, derquantel-abamectin, in sheep in New Zealand. NZ Vet. J.58, 121–129 (2010).
  • Xiao SH, Hui-Ming W, Tanner M, Utzinger J, Chong W. Tribendimidine: a promising, safe and broad-spectrum anthelmintic from China. Acta Trop.94, 1–14 (2005).
  • Hu Y, Xiao S-H, Aroian RF. The new anthelmintic tribendimidine is an L-type (levamisole and pyrantel) nicotinic acetylcholine receptor agonist. PLoS Negl. Trop. Dis.3, e499 (2009).
  • Xue J, Xiao S-H, Xu LL, Qiang HQ. The effect of tribendimidine and its metabolites against Necator americanus in golden hamsters and Nippostrongylus brasiliensis in rats. Parasitol. Res.106, 775–781 (2010).
  • Tripathi RP, Katiyar D, Dwivedi N, Singh BK, Pandey J. Recent development in search of antifilarial agents. Curr. Med. Chem.13, 3319–3334 (2006).
  • Singh PK, Ajay A, Kushwaha S, Tripathi RP, Misra-Bhattacharya S. Towards novel antifilarial drugs: challenges and recent developments. Fut. Med. Chem.2, 251–283 (2010).
  • Woods DJ, Williams TM. The challenges of developing novel antiparasitic drugs. Inv. Neurosci.7, 245–250 (2007).
  • Townson S, Ramirez B, Fakorede F, Mouries M-A, Nwaka S. Challenges in drug discovery for novel antifilarials. Expert Opin. Drug. Discov.2(Suppl. 1), S63–S73 (2007).
  • Thompson DP, Klein RD, Geary TG. Prospects for rational approaches to anthelmintic discovery. Parasitol.113, S217–S238 (1996).
  • Geary TG, Thompson DP, Klein RD. Mechanism-based screening: discovery of the next generation of anthelmintics depends upon more basic research. Int. J. Parasitol.29, 105–112 (1999).
  • Geary TG, Thompson DP. Caenorhabditis elegans: how good a model for veterinary parasites? Vet. Parasitol.101, 371–386 (2001).
  • Burns AR, Wallace IM, Wildenhain J et al. A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans. Nat. Chem. Biol.6, 549–557 (2010).
  • Ruiz-Lancheros E, Viau C, Walter TN, Francis, A, Geary TG. Activity of novel nicotinic anthelmintics in cut preparations of Caenorhabditis elegans. Int. J. Parasitol.41, 455–461 (2011).
  • Woods DJ, Lauret C, Geary TG. Anthelmintic discovery and development in the animal health industry. Expert Opin. Drug. Discov.2(Suppl. 1), S25–S33 (2007).
  • Geary TG, Woods DJ, Williams T, Nwaka S. Target identification and mechanism-based screening for anthelmintics: application of veterinary antiparasitic research programmes to search for new antiparasitic drugs for human indications. In: Drug Discovery in Infectious Diseases. Selzer PM (Ed.). Wiley-VCH, Weinheim, Germany, 1–16 (2009).
  • McCarter JP. Genome filtering: an approach to discovering novel antiparasitics. Trends Parasitol.20, 462–468 (2004).
  • Kumar S, Chaudhary K, Foster JM et al. Mining predicted essential genes of Brugia malayi for nematode drug targets. PLoS ONE11, e1189 (2007).
  • Agüero F, Al-Lazikani, B, Aslett M et al. Genomic-scale prioritization of drug targets: the TDR Targets database. Nat. Rev. Drug Discov.7, 900–907 (2008).
  • Crowther GJ, Shanmugam D, Carmona SJ et al. Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl. Trop. Dis.4, e804 (2010).
  • Behm CA, Bendig MM, McCarter JP, Sluder AE. RNAi-based discovery and validation of new drug targets in filarial nematodes. Trends Parasitol.21, 97–100 (2005).
  • Knox DP, Geldhof P, Visser A, Britton C. RNA interference in parasitic nematodes of animals: a reality check. Trends Parasitol.23, 105–107 (2007).
  • Eberhard ML, Dickerson JW, Tsang VCW et al. Onchocerca volvulus: parasitological and serological responses in experimentally infected chimpanzees and mangabey monkeys. Exp. Parasitol.80, 454–462 (1995).
  • Dube A, Murthy PK, Puri SK, Misra-Bhattacharya S. Presbytis entellus: a primate model for parasitic disease research. Trends Parasitol.20, 358–360 (2004).
  • Allen JE, Adjei O, Bain O et al. Of mice, cattle, and humans: the immunology and treatment of river blindness. PLoS Negl. Trop. Dis.2, e217 (2008).
  • Hewitson JP, Harcus YM, Curwen RS et al. The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory-secretory products. Mol. Biochem. Parasitol.160, 8–21 (2008).
  • Moreno Y, Geary TG. Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products. PLoS Negl. Trop. Dis.2, e326 (2008).
  • Bennuru S, Semnani R, Meng Z, Ribeiro JM, Veenstra TD, Nutman TB. Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling. PLoS Negl. Trop. Dis.3, e410 (2009).
  • Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nature Drug Disc.5, 941–955 (2006).
  • Hudson A, Nwaka S. The concept paper on the Helminth Drug Initiative. Onchocerciasis/lymphatic filariasis and schistosomiasis: opportunities and challenges for the discovery of new drugs/diagnostics. Exp. Opin. Drug Discov.2(Suppl. 1), S3–S7 (2007).
  • Nwaka S, Ramirez B, Brun R, Maes L, Douglas F, Ridley R. Advancing drug innovation for neglected diseases – criteria for lead progression. PLoS Negl. Trop. Dis.3, e440 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.