89
Views
30
CrossRef citations to date
0
Altmetric
Review

Impact of HCV genetic differences on pathobiology of disease

&
Pages 747-759 | Published online: 10 Jan 2014

References

  • Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis.5, 558–567 (2005).
  • Grakoui A, Wychowski C, Lin C, Feinstone SM, Rice CM. Expression and identification of hepatitis C virus polyprotein cleavage products. J. Virol.67(3), 1385–1395 (1993).
  • Simmonds P, Holmes EC, Cha TA et al. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J. Gen. Virol.74, 2391–2399 (1993).
  • Okamoto H, Kurai K, Okada S et al. Full-length sequence of a hepatitis C virus genome having poor homology to reported isolates: comparative study of four distinct genotypes. Virology188, 331–341 (1992).
  • Simmonds P. Genetic diversity and evolution of hepatitis C virus-15 years on. J. Gen. Virol.85(Pt 11), 3173–3188 (2004).
  • Fukumoto T, Berg T, Ku Y et al. Viral dynamics of hepatitis C early after orthotopic liver transplantation: evidence for rapid turnover of serum virions. Hepatology24, 1351–1354 (1996).
  • Neumann AU, Lam NP, Dahari H et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science282, 103–107 (1998).
  • Gomez J, Martell M, Quer J, Cabot B, Esteban JI. Hepatitis C viral quasispecies. J. Viral. Hepat.6(1), 3–16 (1999).
  • Wohnsland A, Hofman WP, Sarrazin C. Viral determinants of resistance to treatment in patients with hepatitis C. Clin. Microbiol. Rev.20(1), 23–38 (2007).
  • Li H, Sullivan DG, Feuerborn N, McArdle S, Bekele K, Pal S. Genetic diversity of hepatitis C virus predicts recurrent disease after liver transplantation. Virology402(2), 248–255 (2010).
  • Webster G, Barnes E, Brown D, Dusheiko G. HCV genotypes – role in pathogenesis of disease and response to therapy. Baillieres Best Pract. Res. Clin. Gastroenterol.14(2), 229–240 (2000).
  • Stoll-Keller F, Barth H, Fafi-Kremer S, Zeisel MB, Baumert TF. Development of hepatitis C virus vaccines: challenges and progress. Expert Rev. Vaccines8(3), 335–345 (2009).
  • Goodman ZD, Ishak KG. Histopathology of hepatitis C virus infection. Sem. Liver Dis.15, 70–81 (1995).
  • Shintani Y, Fujie H, Miyoshi H et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology126, 840–848 (2004).
  • Hui JM, Sud A, Farrell GC et al. Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression [corrected]. Gastroenterology125, 1695–1704 (2003).
  • Petit JM, Bour JB, Galland-Jos C et al. Risk factors for diabetes mellitus and early insulin resistance in chronic hepatitis C. J. Hepatol.35, 279–283 (2001).
  • Fartoux L, Poujol-Robert A, Guéchot J, Wendum D, Poupon R, Serfaty L. Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut54, 1003–1008 (2005).
  • Adinolfi LE, Gambardella M, Andreana A, Tripodi MF, Utili R, Ruggiero G. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology33, 1358–1364 (2001).
  • Poynard T, Ratziu V, McHutchison J et al. Effect of treatment with peginterferon or interferon α-2b and ribavirin on steatosis in patients infected with hepatitis C. Hepatology38, 75–85 (2003).
  • Hui JM, Kench J, Farrell GC et al. Genotype specific mechanisms for hepatic steatosis in chronic hepatitis C infection. J. Gastroenterol. Hepatol.17, 873–881 (2002).
  • Hezode C, Roudot-Thoraval F, Zafrani ES, Dhumeaux D, Pawlotsky JM. Different mechanisms of steatosis in hepatitis C virus genotypes 1 and 3 infections. J. Viral. Hepat.11, 455–458 (2004).
  • Hourigan LF, Macdonald GA, Purdie D et al. Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology29, 1215–1219 (1999).
  • Camma C, Bruno S, Di Marco V et al. Insulin resistance is associated with steatosis in nondiabetic patients with genotype 1 chronic hepatitis C. Hepatology43, 64–71 (2006).
  • Muzzi A, Leandro G, Rubbia-Brandt L et al. Insulin resistance is associated with liver fibrosis in non-diabetic chronic hepatitis C patients. J. Hepatol.42, 41–46 (2005).
  • Moucari R, Asselah T, Cazals-Hatem D et al. Insulin resistance in chronic hepatitis C: association with genotypes 1 and 4, serum HCV RNA level, and liver fibrosis. Gastroenterology134, 416–423 (2008).
  • White MF, Maron R, Kahn CR. Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature318, 183–186 (1985).
  • Tsakiridis T, McDowell HE, Walker T et al. Multiple roles of phosphatidylinositol 3-kinase in regulation of glucose transport, amino acid transport, and glucose transporters in L-6 skeletal muscle cells. Endocrinology136, 4315–4322 (1995).
  • Hara K, Yonezawa K, Sakaue H et al. 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells. Proc. Natl Acad. Sci. USA91, 7415–7419 (1994).
  • Shepherd PR, Nave BT, Siddle K. Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem. J.305, 25–28 (1995).
  • Carlsen J, Christiansen K, Vinten J. Insulin stimulated glycogen synthesis in isolated rat hepatocytes: effect of protein kinase inhibitors. Cell Signal.9(6), 447–450 (1997).
  • Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. J. Biol. Chem.269, 3568–3573 (1994).
  • Li J, Elberg G, Sekar N, He ZB, Shechter Y. Antilipolytic actions of vanadate and insulin in rat adipocytes mediated by distinctly different mechanism. Endocrinology138, 2274–2279 (1997).
  • Morimoto C, Tsujita T, Okuda H. Antilipolytic actions of insulin on basal and hormone-induced lipolysis in rat adipocytes. J. Lipid. Res.39, 957–962 (1998).
  • Mendez R, Myers M Jr, White MF, Rhoads RE. Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation, and PHAS-I phosphorylation by insulin requires insulin receptor substrate 1 and phosphatidylinositol 3-kinase. Mol. Cell. Biol.16, 2857–2864 (1996).
  • Sutherland C, Waltner-Law M, Gnudi L, Kahn BB, Granner DK. Activation of the ras mitogen-activated protein kinase-ribosomal protein kinase pathway is not required for the repression of phosphoenolpyruvate carboxykinase gene transcription by insulin. J. Biol. Chem.273, 3198–3204 (1998).
  • Valverde AM, Navarro P, Tervel T, Conejo R, Benito M, Lorenzo M. Insulin and insulin-like growth factor 1 up-regulate GLUT 4 gene expression in fetal brown adipocytes, in a phosphoinositide 3-kinase-dependent manner. Biochem. J.337, 397–405 (1999).
  • Pazienza V, Clement S, Pugnale P et al. The hepatitis C virus core protein of genotypes 3a and 1b downregulates insulin receptor substrate 1 through genotype-specific mechanisms. Hepatology45(5), 1164–1171 (2007).
  • Miyamoto H, Moriishi K, Moriya K et al. Involvement of the PA28g-dependent pathway in insulin resistance induced by hepatitis C virus core protein. J. Virol.81, 1727–1735 (2007).
  • Kawaguchi T, Yoshida T, Harada M et al. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine. Am. J. Pathol.165(5), 1499–1508 (2004).
  • Aytug S, Reich D, Sapiro LE, Bernstein D, Begum N. Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of Type 2 diabetes. Hepatology38, 1384–1392 (2003).
  • Yao ZQ, Waggoner SN, Cruise MW et al. SOCS1 and SOCS3 are targeted by hepatitis C virus core/gC1qR ligation to inhibit T-cell function. J. Virol.79, 15417–15429 (2005).
  • Walsh MJ, Jonsson JR, Richardson MM et al. Non-response to antiviral therapy is associated with obesity and increased hepatic expression of SOCS-3 in patients with chronic hepatitis C, viral genotype 1. Gut55, 529–535 (2006).
  • Bode JG, Ludwig S, Ehrhardt C et al. IFN-α antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. FASEB J.17, 488–490 (2003).
  • Calegari VC, Alves M, Picardi PK et al. Suppressor of cytokine signaling-3 provides a novel interface in the cross-talk between angiotensin II and insulin signaling systems. Endocrinology146, 579–588 (2005).
  • Banerjee S, Saito K, Ait-Goughoulte M, Meyer K, Ray RB, Ray R. Hepatitis C virus core protein upregulates serine phosphorylation of insulin receptor substrate-1 and impairs the downstream akt/protein kinase B signaling pathway for insulin resistance. J. Virol.82(6), 2606–2612 (2008).
  • Crespo J, Riviero M, Fabrega E et al. Plasma leptin and TNF-α levels in chronic hepatitis C patients and their relationship to hepatic fibrosis. Dig. Dis. Sci.47(7), 1604–1610 (2002).
  • Kallinowski B, Haseroth K, Marinos G et al. Induction of tumour necrosis factor (TNF) receptor type p55 and p75 in patients with chronic hepatitis C virus (HCV) infection. Clin. Exp. Immunol.111, 269–277 (1998).
  • Nelson DR, Lim HL, Marousis CG et al. Activation of tumor necrosis factor-α system in chronic hepatitis C virus infection. Dig. Dis. Sci.42, 2487–2494 (1997).
  • Zylberberg H, Rimaniol AC, Pol S et al. Soluble tumor necrosis factor receptors in chronic hepatitis C: a correlation with histological fibrosis and activity. J. Hepatol.30(2), 185–191 (1999).
  • Moriishi K, Okabayashi T, Nakai K et al. Proteasome activator PA28g-dependent nuclear retention and degradation of hepatitis C virus core protein. J. Virol.77, 10237–10249 (2003).
  • Akuta N, Suzuki F, Hirakawa M et al. Amino acid substitutions in the hepatitis C virus core region of genotype 1b are the important predictor of severe insulin resistance in patients without cirrhosis and diabetes mellitus. J. Med. Virol.81, 1032–1039 (2009).
  • Tachi Y, Katano Y, Honda T et al. Impact of amino acid substitutions in the hepatitis C virus genotype 1b core region on liver steatosis and hepatic oxidative stress in patients with chronic hepatitis C. Liver Int.30, 554–559 (2010).
  • Akuta N, Suzuki F, Kawamura Y et al. Amino acid substitutions in the hepatitis C virus core region are the important predictor of hepatocarcinogenesis. Hepatology46, 1357–1364 (2007).
  • Kobayashi M, Akuta N, Suzuki F et al. Influence of aminoacid polymorphism in the core protein on progression of liver disease in patients infected with hepatitis C virus genotype 1b. J. Med. Virol.82, 41–48 (2010).
  • Fishman SL, Factor SH, Balestrieri C et al. Mutations in the hepatitis C virus core gene are associated with advanced liver disease and hepatocellular carcinoma. Clin. Cancer Res.15, 3205–3213 (2009).
  • Hu Z, Muroyama R, Kowatari N, Chang J, Omata M, Kato N. Characteristic mutations in hepatitis C virus core gene related to the occurrence of hepatocellular carcinoma. Cancer Sci.100, 2465–2468 (2009).
  • An J, Muoio DM, Shiota M et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat. Med.10, 268–274 (2004).
  • Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science274, 1185–1188 (1996).
  • Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann. Intern. Med.122, 481–486 (1995).
  • Elghouhari HM, Cesario KB, Lopez R, Zein NN. Pioglitazone improves early virologic kinetic response to PEG INF/RBV combination therapy in hepatitis C genotype 1 naive pts. Hepatology48, 383A (2008).
  • Overbeck K, Genné D, Golay A, Negro F. Pioglitazone in chronic hepatitis C not responding to pegylated interferon-α and ribavirin. Swiss Association for the Study of the Liver (SASL). J. Hepatol.49(2), 295–298 (2008).
  • Negro F. Correction of insulin resistance in chronic hepatitis C patients not responding to the standard of care: more questions than answers. INSPIRED-HCV Study Group. J. Hepatol.50(6), 1271–1272 (2009).
  • Romero-Gomez M, Del Mar Viloria M, Andrade RJ et al. Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology128, 636–664 (2005).
  • Pazienza V, Vinciguerra M, Andriulli A, Mangia A. Hepatitis C virus core protein genotype 3a increases SOCS-7 expression through PPAR-{γ} in Huh-7 cells. J. Gen. Virol.91(Pt 7), 1678–1686 (2010).
  • Lonardo A, Adinolfi LE, Loria P, Carulli N, Ruggiero G, Day CP. Steatosis and hepatitis C virus: mechanisms and significance for hepatic and extrahepatic disease. Gastroenterology126, 586–597 (2004).
  • Hwang SJ, Luo JC, Chu CW et al. Hepatic steatosis in chronic hepatitis C virus infection: prevalence and clinical correlation. J. Gastroenterol. Hepatol.16, 190–195 (2001).
  • Tsutsumi T, Suzuki T, Shimoike T et al. Interaction of hepatitis C virus core protein with retinoid X receptor α modulates its transcriptional activity. Hepatology35, 937–946 (2002).
  • Abid K, Pazienza V, De Gottardi A et al. An in vitro model of hepatitis C virus genotype 3a-associated triglycerides accumulation. J. Hepatol.42, 744–751 (2005).
  • Hourioux C, Patient R, Morin A et al. The genotype 3-specific hepatitis C virus core protein residue phenylalanine 164 increases steatosis in an in vitro cellular model. Gut56, 1302–1308 (2007).
  • Piodi A, Chouteau P, Lerat H, Hezode C , Pawlotsky JM. Morphological changes in intracellular lipid droplets induced by different hepatitis C virus genotype core sequences and relationship with steatosis. Hepatology48, 16–27 (2008).
  • Barba G, Harper F, Harada T et al. Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc. Natl Acad. Sci. USA94, 1200–1205 (1997).
  • Chang ML, Yeh CT, Chen JC et al. Altered expression patterns of lipid metabolism genes in an animal model of HCV core-related, nonobese, modest hepatic steatosis. BMC Genomics9, 109 (2008).
  • Moriya K, Yotsuyanagi H, Shintani Y et al. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J. Gen. Virol.78, 1527–1531 (1997).
  • Perlemuter G, Sabile A, Letteron P et al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J.16, 185–194 (2002).
  • Lerat H, Honda M, Beard MR et al. Steatosis and liver cancer in transgenic mice expressing the structural and non-structural proteins of hepatitis C virus. Gastroenterology122, 352–365 (2002).
  • Shi ST, Polyak SJ, Tu H, Taylor DR, Gretch DR, Lai MM. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology292, 198–210 (2002).
  • Jackel-Cram C, Babiuk LA, Liu QJ. Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core. Hepatology46(6), 999–1008 (2007).
  • Kim KH, Hong SP, Kim K, Park MJ, Kim KJ, Cheong J. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARc. Biochem. Biophys. Res. Commun.355(4), 883–888 (2007).
  • Okuda M, Li K, Beard MR et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology122, 366–375 (2002).
  • Waris G, Felmlee DJ, Negro F, Siddiqui A. Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J. Virol.81(15), 8122–8130 (2007).
  • Moriya K, Fujie H, Shintani Y et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat. Med.4, 1065–1067 (1998).
  • Grassi A, Ballardini G, Susca M et al. HCV liver infection and liver steatosis: evidence for indirect mechanisms in genotype 3? Aliment. Pharmacol. Ther.22, 79–82 (2005).
  • Asselah T, Boyer N, Marcellin P. Steatosis in hepatitis C: what does it mean? Gastroenterol. Clin. Biol. 27(12), 1073–1075 (2003).
  • Patton HM, Patel K, Behling C et al. The impact of steatosis on disease progression and early and sustained treatment response in chronic hepatitis C patients. J. Hepatol.40, 484–490 (2004).
  • Kumar D, Farrell GC, Fung C, George G. Hepatitis C virus genotype 3 is cytopathic to hepatocytes: reversal of hepatic steatosis after sustained therapeutic response. Hepatology36(5), 1266–1272 (2002).
  • Rubbia-Brandt L, Quadri R, Abid K et al. Hepatocyte steatosis is a cytopathic effect of hepatitis C virus genotype 3. J. Hepatol.33, 106–115 (2000).
  • Castera L, Hézode C, Roudot-Thoraval F et al. Worsening of steatosis is an independent factor of fibrosis progression in untreated patients with chronic hepatitis C and paired liver biopsies. Gut52, 288–292 (2003).
  • Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y. Lipid droplets: a classic organelle with new outfits. Histochem. Cell. Biol.130(2), 263–279 (2008).
  • Miyanari Y, Atsuzawa K, Usuda N et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell. Biol.9, 1089–1097 (2007).
  • Gonzalez-Peralta RP, Fang JW, Davis GL et al. Optimization for the detection of hepatitis C virus antigens in the liver. J. Hepatol.20, 143–147 (1994).
  • Yap SH, Willems M, Van den Oord J et al. Detection of hepatitis C virus antigen by immuno-histochemical staining: a histological marker of hepatitis C virus infection. J. Hepatol.20, 275–281 (1994).
  • Hope RG, McLauchlan J. Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J. Gen. Virol.81(Pt 8), 1913–1925 (2000).
  • Jhaveri R, McHutchison J, Patel K, Qiang G, Diehl AM. Specific polymorphisms in hepatitis C virus genotype 3 core protein associated with intracellular lipid accumulation. J. Infect. Dis.197, 283–291 (2008).
  • Choi J, Ou JH. Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am. J. Physiol. Gastrointest. Liver Physiol.290(5), G847–G851 (2006).
  • Vidali M, Tripodi MF, Ivaldi A et al. Interplay between oxidative stress and hepatic steatosis in the progression of chronic hepatitis C. J. Hepatol.48(3), 399–406 (2008).
  • NIH consensus statement on management of hepatitis C: 2002. NIH Consens. State Sci. Statements19(3), 1–46 (2002).
  • Missale G, Bertoni R, Lamonaca V et al. Different clinical behaviors of acute hepatitis C virus infection are associated with different vigor of the anti-viral cell-mediated immune response. J. Clin. Invest.98(3), 706–714 (1996).
  • Zein NN, Li H, Persing DH. Humoral immunity in acute and chronic hepatitis C infection. Gastroenterology117(2), 510 (1999).
  • Amoroso P, Rapicetta M, Tosti ME et al. Correlation between virus genotype and chronicity rate in acute hepatitis C. J. Hepatol.28, 939–944 (1998).
  • Nousbaum JB, Pol S, Nalpas B, Landais P, Berthelot P, Brechot C. Hepatitis C virus type 1b (II) infection in France and Italy. Collaborative Study Group. Ann. Intern. Med.122, 161–168 (1995).
  • Pozzato G, Moretti M, Franzin F et al. Severity of liver disease with different hepatitis C viral clones. Lancet338, 509 (1991).
  • Ratziu V, Saboury M, Poynard T. Worsening of steatosis and fibrosis progression (comment). Gut52, 1386–1387 (2003).
  • Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. Lancet349, 825–832 (1997).
  • Seeff LB. Natural history of hepatitis C. Am. J. Med.107, S10–S15 (1999).
  • Deuffic-Burban S, Poynard T, Valleron AJ. Quantification of fibrosis progression in patients with chronic hepatitis C using a Markov model. J. Viral. Hepat.9, 114–122 (2002).
  • Ortiz V, Berenguer M, Rayon JM, Carrasco D, Berenguer J. Contribution of obesity to hepatitis C-related fibrosis progression. Am. J. Gastroenterol.97, 2408–2414 (2002).
  • Serfaty L, Poujol-Robert A, Carbonell N, Chazouilleres O, Poupon RE, Poupon R. Effect of the interaction between steatosis and alcohol intake on liver fibrosis progression in chronic hepatitis C. Am. J. Gastroenterol.97, 1807–1812 (2002).
  • Wiley TE, McCarthy M, Breidi L, Layden TJ. Impact of alcohol on the histological and clinical progression of hepatitis C infection. Hepatology28, 805–809 (1998).
  • Pistello M, Maggi F, Vatteroni L et al. Prevalence of hepatitis C virus genotypes in Italy. J. Clin. Microbiol.32, 232–234 (1994).
  • Pozzato G, Moretti M, Croce LS et al. Interferon therapy in chronic hepatitis C virus: evidence of different outcome with respect to different viral strains. J. Med. Virol.45, 445–450 (1995).
  • Silini E, Bono F, Cividini A et al. Differential distribution of hepatitis C virus genotypes in patients with and without liver function abnormalities. Hepatology21, 285–290 (1995).
  • Zein NN, Rakela J, Poterucha JJ, Steers JL, Wiesner RH, Persing DH. Hepatitis C genotypes in liver transplant recipients: distribution and 1-year follow-up. Liver Transpl. Surg.1(6), 354–357 (1995).
  • Zein NN, Rakela J, Krawitt EL et al. Hepatitis C virus genotypes in the United States: epidemiology, pathogenicity, and response to interferon therapy. Ann. Intern. Med.125, 634–639 (1996).
  • Monto A, Alonzo J, Watson JJ, Grunfeld C, Wright TL. Steatosis in chronic hepatitis C: relative contributions of obesity, diabetes mellitus, and alcohol. Hepatology36, 729–736 (2002).
  • Czaja AJ, Carpenter HA, Santrach PJ, Moore SB. Host- and disease-specific factors affecting steatosis in chronic hepatitis C. J. Hepatol.29, 198–206 (1998).
  • Bochud PY, Cai T, Overbeck K et al. Genotype 3 is associated with accelerated fibrosis progression in chronic hepatitis. J. Hepatol.51(4), 655–666 (2009).
  • Westin J, Nordlinder H, Lagging M, Norkrans G, Wejstal R. Steatosis accelerates fibrosis development over time in hepatitis C virus genotype 3 infected patients. J. Hepatol.37, 837–842 (2002).
  • Rubbia-Brandt L, Fabris P, Paganin S et al. Steatosis affects chronic hepatitis C progression in a genotype specific way. Gut53(3), 406–412 (2004).
  • Leandro G, Mangia A, Hui J et al. Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology130, 1636–1642 (2006).
  • Cua IH, Hui JM, Kench JG, George J. Genotype-specific interactions of insulin resistance, steatosis, and fibrosis in chronic hepatitis C. Hepatology48(3), 723–731 (2008).
  • Kasprzak A, Zabel M, Biczysko W et al. Expression of cytokines (TNF-α, IL-1α, and IL-2) in chronic hepatitis C: Comparative Hybridocytochemical and Immunocytochemical Study in children and adult patients. J. Histochem. Cytochem.52(1), 29–38 (2004).
  • Bruno S, Crosignani A, Maisonneuve P, Rossi S, Silini E, Mondelli MU. Hepatitis C virus genotype 1b as a major risk factor associated with hepatocellular carcinoma in patients with cirrhosis: a seventeen-year prospective cohort study. Hepatology46, 1350–1356 (2007).
  • Brechot C. Hepatitis C virus: molecular biology and genetic variability. Dig. Dis. Sci.41(Suppl. 12), S6–S21 (1996).
  • Shimotohno K. Hepatitis C virus as a causative agent of hepatocellular carcinoma. Intervirology38, 162–169 (1995).
  • Raimondi S, Bruno S, Mondelli MU, Maisonneuve P. Hepatitis C virus genotype 1b as a risk factor for hepatocellular carcinoma development: a meta-analysis. J. Hepatol.50(6), 1142–1154 (2009).
  • De Mitri MS, Poussin K, Baccarini P et al. HCV-associated liver cancer without cirrhosis. Lancet345, 413–415 (1995).
  • Madhoun MF, Fazili J, Bright BC, Bader T, Roberts DN, Bronze MS. Hepatitis C prevalence in patients with hepatocellular carcinoma without cirrhosis. Am. J. Med. Sci.339, 169–173 (2010).
  • Hoofnagle JH. Course and outcome of hepatitis C. Hepatology36, S21–S29 (2002).
  • McHutchison JG, Gordon SC, Schiff ER et al. Interferon α-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group. N. Engl. J. Med.339, 1485–1492 (1998).
  • Liang TJ, Rehermann B, Seeff LB, Hoofnagle JH. Pathogenesis, natural history, treatment, and prevention of hepatitis C. Ann. Intern. Med.132, 296–305 (2000).
  • Davis GL, Lau JY. Factors predictive of a beneficial response to therapy of hepatitis C. Hepatology26, S122–S127 (1997).
  • Yoshioka K, Kakumu S, Wakita T et al. Detection of hepatitis C virus by polymerase chain reaction and response to interferon-α therapy: relationship to genotypes of hepatitis C virus. Hepatology16, 293–299 (1992).
  • Roffi L, Redaelli A, Colloredo G et al. Outcome of liver disease in a large cohort of histologically proven chronic hepatitis C: influence of HCV genotype. Eur. J. Gastroenterol. Hepatol.13, 501–506 (2001).
  • Tanaka H, Tsukuma H, Yamano H et al. Hepatitis C virus 1b (II) infection and development of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma: a case–control study in Japan. J. Epidemiol.8, 244–249 (1998).
  • Nishise Y, Saito T, Sugahara K et al. Risk of hepatocellular carcinoma and secondary structure of hepatitis C virus (HCV) NS3 protein amino-terminus, in patients infected with HCV subtype 1b. J. Infect. Dis.196, 1006–1009 (2007).
  • Ishido S, Hotta H. Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett.438, 258–262 (1998).
  • Basu A, Meyer K, Lai KK et al. Microarray analyses and molecular profiling of Stat3 signaling pathway induced by hepatitis C virus core protein in human hepatocytes. Virology349, 347–358 (2006).
  • Ray RB, Lagging LM, Meyer K, Steele R, Ray R. Transcriptional regulation of cellular promoters by hepatitis C virus core protein. Virus Res.37, 209–220 (1995).
  • Hayashi J, Aoki H, Kajino K, Moriyama M, Arakawa Y, Hino O. Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor α. Hepatology32(5), 958–961 (2000).
  • Koike K. Steatosis, liver injury, and hepatocarcinogenesis in hepatitis C viral infection. J. Gastroenterol.44(Suppl. 19), 82–88 (2009).
  • Arora P, Kim EO, Jung JK, Jang KL. Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer Lett.261(2), 244–252 (2008).
  • Eng F, Klepper A, Walewski JL et al. Internal initiation stimulates production of p8 minicore, a member of a newly discovered family of hepatitis C virus core protein isoforms. J. Virol.83(7), 3104–3114 (2009).
  • Strader DB, Wright T, Thomas DL, Seeff LB. Diagnosis, management, and treatment of hepatitis C. American Association for the study of liver diseases. Hepatology39, 1147 (2004).
  • Causse X, Godinot H, Chevallier M et al. Comparison of 1 or 3 µ of interferon α-2b and placebo in patients with chronic non-A, non-B hepatitis. Gastroenterology101, 497–502 (1991).
  • Karino Y, Matsushima T, Saga A, Tsuyuguchi M, Miyazaki T, Toyota J. Treatment of chronic non-A, non-B hepatitis with interferon. Gastroenterology26(Suppl. 3), 234–238 (1991).
  • Weiland O, Zhang YY, Widell A. Serum HCV RNA levels in patients with chronic hepatitis C given a second course of interferon α-2b treatment after relapse following initial treatment. Scand. J. Infect. Dis.25, 25–30 (1993).
  • Fried MW, Shiffman ML, Reddy KR et al. Peginterferon α-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med.347(13), 975–982 (2002).
  • Hadziyannis SJ, Sette H Jr, Morgan TR et al. Peginterferon-α2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann. Intern. Med.140(5), 346–355 (2004).
  • Manns MP, McHutchison JG, Gordon SC et al. Peginterferon α-2b plus ribavirin compared with interferon α-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet358(9286), 958–965 (2001).
  • Poynard T, Marcellin P, Lee SS et al. Randomised trial of interferon α-2b plus ribavirin for 48 weeks or for 24 weeks versus interferon α-2b placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. Lancet352, 1426–1432 (1998).
  • Dalgard O, Mangia A. Short-term therapy for patients with hepatitis C virus genotype 2 or 3 infection. Drugs66(14), 1807–1815 (2006).
  • von Wagner M, Huber M, Berg T et al. Peginterferon-α-2a (40 kDa) and ribavirin for 16 or 24 weeks in patients with genotype 2 or 3 chronic hepatitis C. Gastroenterology129(2), 522–527 (2005).
  • Nguyen MH, Keeffe EB. Prevalence and treatment of hepatitis C virus genotypes 4, 5, and 6. Clin. Gastroenterol. Hepatol.3(10 Suppl. 2), S97–S101 (2005).
  • Ghany MG, Strader DB, Thomas DL, Seeff LB. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology49, 1335–1374 (2009).
  • Welker MW, Zeuzem S. Occult hepatitis C: how convincing are the current data? Hepatology49, 665–675 (2009).
  • Bruno S, Shiffman ML, Roberts SK et al. Efficacy and safety of peginterferon α-2a (40kD) plus ribavirin in hepatitis C patients with advanced fibrosis and cirrhosis. Hepatology51, 388–397 (2010).
  • Muir AJ, Bornstein JD, Killenberg PG. Peginterferon α-2b and ribavirin for the treatment of chronic hepatitis C in blacks and non-Hispanic whites. N. Engl. J. Med.350, 2265–2271 (2004).
  • Reddy KR, Messinger D, Popescu M, Hadziyannis SJ. Peginterferon α-2a (40 kDa) and ribavirin: comparable rates of sustained virological response in sub-sets of older and younger HCV genotype 1 patients. J. Viral. Hepat.16, 724–731 (2009).
  • Conjeevaram HS, Fried MW, Jeffers LJ et al. Peginterferon and ribavirin treatment in African American and Caucasian American patients with hepatitis C genotype 1. Gastroenterology131, 470–477 (2006).
  • Ge D, Fellay J, Thompson AJ et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature461, 399–401 (2009).
  • Suppiah V, Moldovan M, Ahlenstiel G et al. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nat. Genet.41, 1100–1104 (2009).
  • Tanaka Y, Nishida N, Sugiyama M et al. Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C. Nat. Genet.41, 1105–1109 (2009).
  • Hayashi J, Kishihara Y, Yoshimura E et al. Relationship of genotype to level of hepatitis C viraemia determined by competitive polymerase chain reaction. J. Infect.30, 235–239 (1995).
  • Enomoto N, Sakuma I, Asahina Y et al. Comparison of full length sequences of interferon sensitive and resistant hepatitis C virus 1b. J. Clin. Invest.96, 224–230 (1995).
  • Paterson M, Laxton CD, Thomas HC, Ackrill AM, Foster GR. Hepatitis C virus NS5A protein inhibits interferon antiviral activity, but the effects do not correlate with clinical response. Gastroenterology117, 1187–1197 (1999).
  • Aizaki H, Saito S, Ogino T et al. Suppression of interferon-induced antiviral activity in cells expressing hepatitis C virus proteins. J. Interferon Cytokine Res.20, 1111–1120 (2000).
  • Nousbaum JB, Polyak SJ, Ray SC et al. Prospective characterization of full-length hepatitis C virus NS5A quasispecies during induction and combination antiviral therapy. J. Virol.74, 9028–9038 (2000).
  • Williams BR. Signal integration via PKR. Sci. STKE89, re2 (2001).
  • Gale M, Korth M, Tang N et al. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology230, 217–227 (1997).
  • Bossemeyer D. Protein kinases – structure and function. FEBS Lett.369, 57–61 (1995).
  • Taylor SS, Knighton DR, Zheng J, Sowadski JM, Gibbs CS, Zoller MJ. A template for the protein kinase family. Trends Biochem. Sci.18, 84–89 (1993).
  • Polyak SJ, Khabar KS, Paschal DM et al. Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response. J. Virol.75, 6095–6106 (2001).
  • Polyak SJ, Khabar KS, Rezeiq M, Gretch DR. Elevated levels of interleukin-8 in serum are associated with hepatitis C virus infection and resistance to interferon therapy. J. Virol.75, 6209–6211 (2001).
  • Girard S, Shalhoub P, Lescure P et al. An altered cellular response to interferon and up-regulation of interleukin-8 induced by the hepatitis C viral protein NS5A uncovered by microarray analysis. Virology295, 272–283 (2002).
  • Khabar KS, Al-Zoghaibi F, Al-Ahdal MN et al. The α chemokine, interleukin 8, inhibits the antiviral action of interferon α. J. Exp. Med.186, 1077–1085 (1997).
  • Akuta N, Suzuki F, Hirakawa M et al. Amino acid substitution in HCV core region and genetic variation near the IL28B gene affect viral dynamics during telaprevir, peginterferon and ribavirin treatment. Intervirology DOI: 10.1159/000323526 (2011) (Epub ahead of print).
  • Hsu CS, Hsu SJ, Chen HC et al. Association of IL28B gene variations with mathematical modeling of viral kinetics in chronic hepatitis C patients with IFN plus ribavirin therapy. Proc. Natl Acad. Sci. USA108(9), 3719–3724 (2011).
  • Zeuzem S, Berg T, Moeller B et al. Expert opinion on the treatment of patients with chronic hepatitis C. J. Viral. Hepat.16, 75–90 (2009).
  • McHutchison JG, Everson GT, Gordon SC et al. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N. Engl. J. Med.360, 1827–1838 (2009).
  • McHutchison JG, Manns MP, Muir AJ et al. Telaprevir for previously treated chronic HCV infection. N. Engl. J. Med.362, 1292–1303 (2010).
  • Hezode C, Forestier N, Dusheiko G et al. Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N. Engl. J. Med.360, 1839–1845 (2009).
  • Kwo PY, Lawitz EJ, McCone J et al. Efficacy of boceprevir, an NS3 protease inhibitor, in combination with peginterferon α-2b and ribavirin in treatment-naive patients with genotype 1 hepatitis C infection (SPRINT-1): an open-label, randomised, multicentre Phase 2 trial. Lancet28, 376(9742), 705–716 (2010).
  • Foster GR, Hezode C, Bronowicki JP et al. Activity of telaprevir alone or in combination with peginterferon α-2a and ribavirin in treatment-naive genotype 2 and 3 hepatitis-C patients: interim results of study C209. J. Hepatol.50(Suppl. 1), S22 (2009).
  • Benhamou Y, Moussalli J, Ratziu V et al. Results of a prove of concept study (C210) of telaprevir monotherapy and in combination with peginterferon α-2a and ribavirin in treatment-naive genotype 4 HCV patients. J. Hepatol.50(Suppl. 1), S6 (2009).
  • Forestier N, Susser S, Welker MW et al. Long term follow-up of patients previously treated with telaprevir. Hepatology48(Suppl. 1), 760 (2008).
  • McCown MF, Rajyaguru S, Kular S, Cammack N, Najera I. GT-1a or GT-1b subtype-specific resistance profiles for hepatitis C virus inhibitors telaprevir and HCV-796. Antimicrob. Agents Chemother.53, 2129–2132 (2009).
  • Lin C, Gates CA, Rao BG et al.In vitro studies of crossresistance mutations against two hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061. J. Biol. Chem.280, 36784–36791 (2005).
  • Lin K, Kwong AD, Lin C. Combination of a hepatitis C virus NS3–NS4A protease inhibitor and α interferon synergistically inhibits viral RNA replication and facilitates viral RNA clearance in replicon cells. Antimicrob. Agents Chemother.48, 4784–4792 (2004).
  • Lin K, Perni RB, Kwong AD, Lin C. VX-950, a novel hepatitis C virus (HCV) NS3–4A protease inhibitor, exhibits potent antiviral activities in HCV replicon cells. Antimicrob. Agents Chemother.50, 1813–1822 (2006).
  • Adiwijaya BS, Hare B, Caron PR et al. Rapid decrease of wild-type hepatitis C virus on telaprevir treatment. Antivir. Ther.14, 591–595 (2009).
  • Malcolm BA, Liu R, Lahser F et al. SCH 503034, a mechanism-based inhibitor of hepatitis C virus NS3 protease, suppresses polyprotein maturation and enhances the antiviral activity of α interferon in replicon cells. Antimicrob. Agents. Chemother.50, 1013–1020 (2006).
  • Susser S, Welsch C, Wang Y et al. Characterization of resistance to the protease inhibitor boceprevir in hepatitis C virus infected patients. Hepatology50, 1709–1718 (2009).
  • Sarrazin C, Zeuzem S. Resistance to direct antiviral agents in patients with hepatitis C virus infection. Gastroenterology138(2), 447–462 (2010).
  • Tong X, Chase R, Skelton A, Chen T, Wright-Minogue J, Malcom BA. Identification and analysis of fitness of resistance mutations against the HCV protease inhibitor SCH 503034. Antiviral. Res.70, 28–38 (2006).
  • Poordad F, McCone J, Bacon BR et al. Boceprevir combined with peginterferon α-2b/ribavirin for treatment-naive patients with HCV genotype 1: SPRINT-2 final results. Hepatology52(Suppl. 1), 402A (2010) (Abstract LB-4).
  • Jacobson IM, McHutchinson JG, Dusheiko GM. Telaprevir in combination with peginterferon and ribavirin in genotype 1 HCV treatment-naive patients: final results of Phase 3 ADVANCE study. Hepatology52(Suppl. 1), 427A (2010) (Abstract 211).
  • Sherman KE, Flamm SL, Afdhal NH et al. Telaprevir in combination with peginterferon α2a and ribavirin for 24 or 48 weeks in treatment-naive genotype 1 HCV patients who achieved an extended rapid viral response: final results of Phase 3 ILLUMINATE study. Hepatology52(Suppl. 1), 401A (2010) (Abstract LB-2).
  • Bacon BR, Gordon SC, Lawitz E et al. HCV RESPOND-2 final results: high sustained virologic response among genotype 1 previous non-responders and relapsers to peginterferon/ribavirin when re-treated with boceprevir plus PEGINTRON (Peginterferon α-2b)/ribavirin. Hepatology52(Suppl. 1), 430A (2010) (Abstract 216).
  • Foster GR, Zeuzem S, Andreone P et al. Telaprevir-based therapy in G1 HCV-infected patients with prior null response, partial response or relapse to peginterferon/ribavirin: REALIZE trial final results. Hepatol. Int.5, 14 (2011) (Abstract PS02–04).
  • Reesink HW, Zeuzem S, Weegink CJ et al. Rapid decline of viral RNA in hepatitis C patients treated with VX-950: a Phase Ib, placebo-controlled, randomized study. Gastroenterology131, 997–1002 (2006).
  • Jacobson I, Pockros P, Lalezari J et al. Antiviral activity of filibuvir in combination with pegylated interferon α-2a andribavirin for 28 days in treatment-naive patients chronically infected with HCV genotype 1. J. Hepatol.50(Suppl. 1), S382–S383 (2009).
  • Pawlotsky JM. Treatment failure and resistance with direct-acting antiviral drugs against hepatitis C virus. Hepatology53(5), 1742–1751 (2011).
  • Beaulieu PL. Non-nucleoside inhibitors of the HCV NS5B polymerase: progress in the discovery and development of novel agents for the treatment of HCV infections. Curr. Opin. Investig. Drugs8, 614–634 (2007).
  • Lesburg CA, Cable MB, Ferrari E, Hong Z, Mannarino AF, Weber PC. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol.6, 937–943 (1999).
  • Chatterji U, Bobardt M, Selvarajah S et al. The isomerise active site of cyclophilin A is critical for hepatitis C virus replication. J. Biol. Chem.284, 16998–17005 (2009).
  • Flisiak R, Horban A, Gallay P et al. The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus. Hepatology47, 817–826 (2008).
  • Flisiak R, Feinman SV, Jablkowski M et al. The cyclophilin inhibitor Debio 025 combined with PEG IFNα2a significantly reduces viral load in treatment-naive hepatitis C patients. Hepatology49, 1460–1468 (2009).
  • Hopkins S, Heuman D, Gavis E et al. Safety, plasma pharmacokinetics, and anti-viral activity of SCY-635 in adult patients with chronic hepatitis C virus infection. J. Hepatol.50, S36 (2009).
  • Rossignol JF, Kabil SM, El-Gohary Y, Elfert A, Keeffe EB. Clinical trial: randomized, double-blind, placebo-controlled study of nitazoxanide monotherapy for the treatment of patients with chronic hepatitis C genotype 4. Aliment. Pharmacol. Ther.28, 574–580 (2008).
  • Korba BE, Elazar M, Lui P et al. Potential for hepatitis C virus resistance to nitazoxanide or tizoxanide. Antimicrob. Agents Chemother.52, 4069–4071 (2008).
  • Lavillette D, Tarr AW, Voisset C et al. Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology41(2), 265–274 (2005).
  • Berg T, Hopf U, Stark K, Baumgarten R, Lobeck H, Schreier E. Distribution of hepatitis C virus genotypes in German patients with chronic hepatitis C: correlation with clinical and virological parameters. J. Hepatol.26, 484–491 (1997).
  • Pawlotsky JM, Taskiris L, Roudot-Thoraval F et al. Relationship between hepatitis C virus genotypes and sources of infection in patients with chronic hepatitis C. J. Infect. Dis.171, 1607–1610 (1995).
  • Watson JP, Brind AM, Chapman CE et al. Hepatitis C virus: epidemiology and genotypes in the north east of England. Gut38, 269–276 (1996).
  • Pazienza V, Clement S, Pugnale P et al. Gene expression profile of Huh-7 cells expressing hepatitis C virus genotype1b or 3a core proteins. Liver Int.29(5), 661–669 (2009).
  • Dou J, Liu P, Wang J, Zhang X. Preliminary analysis of gene expression profiles in HepG2 cell line induced by different genotype core proteins of HCV. Cell. Mol. Immunol.3, 227–233 (2006).
  • Wasley A, Alter MJ. Epidemiology of hepatitis C: geographic differences and temporal trends. Semin. Liver Dis.20, 1–16 (2000).
  • Gaglio PJ, Moss N, McGaw C, Reinus J. Direct-acting antiviral therapy for hepatitis C: attitudes regarding future use. Dig. Dis. Sci.56(5), 1509–1515 (2011).
  • Lange CM, Sarrazin C, Zeuzem S. Review article: specifically targeted anti-viral therapy for hepatitis C – a new era in therapy. Aliment. Pharmacol. Ther.32(1), 14–28 (2010).
  • Erhardt A, Deterding K, Benhamou Y et al. Safety, pharmacokinetics and antiviral effect of BILB 1941, a novel hepatitis C virus RNA polymerase inhibitor, after 5 days oral treatment. Antivir. Ther.14, 23–32 (2009).
  • Jiang LJ, Gai Y, Middleton T et al. Potent HCV protease inhibitors with the potential for once-daily dosing and broad genotype coverage. J. Hepatol.50(Suppl. 1), S6 (2009).
  • Liang Y, Ishida H, Lenz O et al. Antiviral suppression vs restoration of RIG-I signaling by hepatitis C protease and polymerase inhibitors. Gastroenterology135, 1710–1718 (2008).
  • Nettles R, Chien C, Chung E et al. BMS-790052 is a first-in-class potent hepatitis C virus (HCV) NS5A inhibitor for patients with chronic HCV infection: results from a proof-of-concept study. Hepatology48(Suppl. 1), 1025A (2008).
  • Thompson P, Patel R, Steffy K, Appleman J. Preclinical studies of ANA598 combined with other anti-HCV agents demonstrate potential of combination treatment. J. Hepatol.50(Suppl. 1), S37 (2009).
  • Pawlotsky JM. Therapeutic implications of hepatitis C virus resistance to antiviral drugs. Ther. Adv. Gastroenterol.2, 205–219 (2009).
  • Kieffer TL, Sarrazin C, Miller JS et al. Telaprevir and pegylated interferon-α-2a inhibit wild-type and resistant genotype 1 hepatitis C virus replication in patients. Hepatology46, 631–639 (2007).
  • Sarrazin C, Kieffer TL, Bartels D et al. Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir. Gastroenterology132, 1767–1777 (2007).
  • Villano S, Howe A, Raible D et al. Analysis of HCV NS5B genetic variants following monotherapy with HCV-796, a non-nucleoside polymerase inhibitor, in treatment-naive HCV-infected patients. Hepatology44(Suppl. 1), 607A–608A (2006).
  • Chevaliez S, Bouvier-Alias M, Brillet R, Pawlotsky JM. Hepatitis C virus (HCV) genotype 1 subtype identification in new HCV drug development and future clinical practice. PLoS ONE4(12), e8209 (2009).
  • Piccoli C, Scrima R, Quarato G et al. Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress. Hepatology46(1), 58–65 (2007).
  • Lange CM, Bojunga J, Ramos-Lopez E et al. Vitamin D deficiency and a CYP27B1-1260 promoter polymorphism are associated with chronic hepatitis C and poor response to interferon-α based therapy. J. Hepatol.54(5), 887–893 (2010).
  • Petta S, Cammà C, Scazzone C et al. Low vitamin D serum level is related to severe fibrosis and low responsiveness to interferon-based therapy in genotype 1 chronic hepatitis C. Hepatology51(4), 1158–1167 (2007).
  • Otero RM, Marugan MT. Hepatoprotective effects of antioxidants in chronic hepatitis C. World J. Gastroenterol.16(15), 1937–1938 (2010).
  • Peters MG, Terrault NA. Alcohol use and hepatitis C. Hepatology36(5 Suppl. 1), S220–S225 (2002).
  • Nakamura M, Saito H, Ikeda M et al. An antioxidant resveratrol significantly enhanced replication of hepatitis C virus. World J. Gastroenterol.16, 184–192 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.