184
Views
31
CrossRef citations to date
0
Altmetric
Review

Reappraising the use of β-lactams to treat tuberculosis

&
Pages 999-1006 | Published online: 10 Jan 2014

References

  • Smith DG, Waksman SA. Tuberculostatic and tuberculocidal properties of streptomycin. J. Bacteriol. 54(2), 253–261 (1947).
  • Fleming A. The development and use of penicillin. Chic. Med. Sch. Q. 7(2), 20–28 (1946).
  • Kasik JE, Weber M, Winberg E, Barclay WR. The synergistic effect of dicloxacillin and penicillin G on murine tuberculosis. Am. Rev. Respir. Dis. 94(2), 260–261 (1966).
  • Solotorovsky M, Bugie EJ, Frost BM. The effect of penicillin on the growth of Mycobacterium tuberculosis in Dubos’ medium. J. Bacteriol. 55(4), 555–559 (1948).
  • Kasik JE. The nature of mycobacterial penicillinase. Am. Rev. Respir. Dis. 91, 117–119 (1965).
  • Nadler JP, Berger J, Nord JA, Cofsky R, Saxena M. Amoxicillin-clavulanic acid for treating drug-resistant Mycobacterium tuberculosis. Chest 99(4), 1025–1026 (1991).
  • Yew WW, Wong CF, Lee J, Wong PC, Chau CH. Do β-lactam–β-lactamase inhibitor combinations have a place in the treatment of multidrug-resistant pulmonary tuberculosis? Tuber. Lung Dis. 76(1), 90–92 (1995).
  • Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu. Rev. Biochem. 64, 29–63 (1995).
  • Ortalo-Magné A, Dupont MA, Lemassu A, Andersen AB, Gounon P, Daffé M. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology (Reading, Engl.) 141(Pt. 7), 1609–1620 (1995).
  • Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-d-alanyl-d-alanine. Proc. Natl Acad. Sci. USA 54(4), 1133–1141 (1965).
  • Chambers HF, Moreau D, Yajko D et al. Can penicillins and other β-lactam antibiotics be used to treat tuberculosis? Antimicrob. Agents Chemother. 39(12), 2620–2624 (1995).
  • Wietzerbin J, Das BC, Petit JF, Lederer E, Leyh-Bouille M, Ghuysen JM. Occurrence of d-alanyl-(d)-meso-diaminopimelic acid and meso-diaminopimelyl-meso-diaminopimelic acid interpeptide linkages in the peptidoglycan of mycobacteria. Biochemistry 13(17), 3471–3476 (1974).
  • Goffin C, Ghuysen JM. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol. Mol. Biol. Rev. 66(4), 702–738 (2002).
  • Mainardi JL, Hugonnet JE, Rusconi F et al. Unexpected inhibition of peptidoglycan ld-transpeptidase from Enterococcus faecium by the β-lactam imipenem. J. Biol. Chem. 282(42), 30414–30422 (2007).
  • Sifaoui F, Arthur M, Rice L, Gutmann L. Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob. Agents Chemother. 45(9), 2594–2597 (2001).
  • Lavollay M, Arthur M, Fourgeaud M et al. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by l,d-transpeptidation. J. Bacteriol. 190(12), 4360–4366 (2008).
  • Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43(3), 717–731 (2002).
  • Gupta R, Lavollay M, Mainardi JL, Arthur M, Bishai WR, Lamichhane G. The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat. Med. 16(4), 466–469 (2010).
  • Nguyen L, Thompson CJ. Foundations of antibiotic resistance in bacterial physiology: the mycobacterial paradigm. Trends Microbiol. 14(7), 304–312 (2006).
  • Bardou F, Raynaud C, Ramos C, Lanéelle MA, Lanéelle G. Mechanism of isoniazid uptake in Mycobacterium tuberculosis. Microbiology (Reading, Engl.) 144(Pt. 9), 2539–2544 (1998).
  • Colangeli R, Helb D, Sridharan S et al. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol. Microbiol. 55(6), 1829–1840 (2005).
  • Stephan J, Mailaender C, Etienne G, Daffé M, Niederweis M. Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis. Antimicrob. Agents Chemother. 48(11), 4163–4170 (2004).
  • Hackbarth CJ, Unsal I, Chambers HF. Cloning and sequence analysis of a class A β-lactamase from Mycobacterium tuberculosis H37Ra. Antimicrob. Agents Chemother. 41(5), 1182–1185 (1997).
  • Voladri RK, Lakey DL, Hennigan SH, Menzies BE, Edwards KM, Kernodle DS. Recombinant expression and characterization of the major β-lactamase of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 42(6), 1375–1381 (1998).
  • Flores AR, Parsons LM, Pavelka MS Jr. Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics. Microbiology (Reading, Engl.) 151(Pt 2), 521–532 (2005).
  • Coira A, Salvadó M, Reig R, Chaves J, Segura C. β-Lactamase activity in mycobacteria other than M. tuberculosis. J. Chemother. 7(2), 106–108 (1995).
  • Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE 3rd, Blanchard JS. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 323(5918), 1215–1218 (2009).
  • Dinçer I, Ergin A, Kocagöz T. The vitro efficacy of β-lactam and β-lactamase inhibitors against multidrug resistant clinical strains of Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 23(4), 408–411 (2004).
  • Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23(1), 160–201 (2010).
  • Ambler RP. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 289(1036), 321–331 (1980).
  • Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208(5007), 239–241 (1965).
  • Matthew M, Hedges RW, Smith JT. Types of β-lactamase determined by plasmids in gram-negative bacteria. J. Bacteriol. 138(3), 657–662 (1979).
  • Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev. 18(4), 657–686 (2005).
  • Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20(3), 440–458 (2007).
  • Yong D, Toleman MA, Giske CG et al. Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 53(12), 5046–5054 (2009).
  • Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10(9), 597–602 (2010).
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18(2), 306–325 (2005).
  • Jacoby GA. AmpC β-lactamases. Clin. Microbiol. Rev. 22(1), 161–182 (2009).
  • Ledent P, Raquet X, Joris B, Van Beeumen J, Frère JM. A comparative study of class-D β-lactamases. Biochem. J. 292(Pt. 2), 555–562 (1993).
  • Wang F, Cassidy C, Sacchettini JC. Crystal structure and activity studies of the Mycobacterium tuberculosis β-lactamase reveal its critical role in resistance to β-lactam antibiotics. Antimicrob. Agents Chemother. 50(8), 2762–2771 (2006).
  • Helfand MS, Bethel CR, Hujer AM, Hujer KM, Anderson VE, Bonomo RA. Understanding resistance to β-lactams and β-lactamase inhibitors in the SHV β-lactamase: lessons from the mutagenesis of SER-130. J. Biol. Chem. 278(52), 52724–52729 (2003).
  • Thomas VL, Golemi-Kotra D, Kim C, Vakulenko SB, Mobashery S, Shoichet BK. Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM β-lactamase. Biochemistry 44(26), 9330–9338 (2005).
  • Hugonnet JE, Blanchard JS. Irreversible inhibition of the Mycobacterium tuberculosis β-lactamase by clavulanate. Biochemistry 46(43), 11998–12004 (2007).
  • Tremblay LW, Hugonnet JE, Blanchard JS. Structure of the covalent adduct formed between Mycobacterium tuberculosis β-lactamase and clavulanate. Biochemistry 47(19), 5312–5316 (2008).
  • Maveyraud L, Mourey L, Kotra L et al. Structural basis for clinical longevity of carbapenem antibiotics in the face of challenge by the common class A β-lactamases from the antibiotic-resistant bacteria. J. Am. Chem. Soc. 120(38), 9748–9752 (1998).
  • Zafaralla G, Mobashery, S. Facilitation of the Δ2 to Δ1 pyrroline tautomerization of carbapenem antibiotics by the highly conserved arginine 244 of class A β-lactamases during the course of turnover. J. Am. Chem. Soc. 114, 1505–1506 (1992).
  • Nukaga M, Bethel CR, Thomson JM et al. Inhibition of class A β-lactamases by carbapenems: crystallographic observation of two conformations of meropenem in SHV-1. J. Am. Chem. Soc. 130(38), 12656–12662 (2008).
  • Tremblay LW, Fan F, Blanchard JS. Biochemical and structural characterization of Mycobacterium tuberculosis β-lactamase with the carbapenems ertapenem and doripenem. Biochemistry 49(17), 3766–3773 (2010).
  • Triboulet S, Arthur M, Mainardi JL et al. Inactivation kinetics of a new target of β-lactam antibiotics. J. Biol. Chem. 286(26), 22777–22784 (2011).
  • Chambers HF, Kocagöz T, Sipit T, Turner J, Hopewell PC. Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin. Infect. Dis. 26(4), 874–877 (1998).
  • Donald PR, Sirgel FA, Venter A et al. Early bactericidal activity of amoxicillin in combination with clavulanic acid in patients with sputum smear-positive pulmonary tuberculosis. Scand. J. Infect. Dis. 33(6), 466–469 (2001).
  • Chambers HF, Turner J, Schecter GF, Kawamura M, Hopewell PC. Imipenem for treatment of tuberculosis in mice and humans. Antimicrob. Agents Chemother. 49(7), 2816–2821 (2005).
  • Dauby N, Muylle I, Mouchet F, Sergysels R, Payen MC. Meropenem/clavulanate and linezolid treatment for extensively drug-resistant tuberculosis. Pediatr. Infect. Dis. J. 30(9), 812–813 (2011).
  • Veziris N, Truffot C, Mainardi JL, Jarlier V. Activity of carbapenems combined with clavulanate against murine tuberculosis. Antimicrob. Agents Chemother. 55(6), 2597–2600 (2011).
  • Segura C, Salvadó M, Collado I, Chaves J, Coira A. Contribution of β-lactamases to β-lactam susceptibilities of susceptible and multidrug-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob. Agents Chemother. 42(6), 1524–1526 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.