151
Views
20
CrossRef citations to date
0
Altmetric
Review

CYP3A polymorphisms and immunosuppressive drugs in solid-organ transplantation

Pages 383-390 | Published online: 09 Jan 2014

References

  • Burckart GJ, Hutchinson IV, Zeevi A. Pharmacogenomics and lung transplantation: clinical implications. Pharmacogenomics J.6(5), 301–310 (2006).
  • Cattaneo D, Perico N, Remuzzi G. From pharmacokinetics to pharmacogenomics: a new approach to tailor immunosuppressive therapy. Am. J. Transplant.4(3), 299–310 (2004).
  • de Jonge H, Kuypers DR. Pharmacogenetics in solid organ transplantation: current status and future directions. Transplant. Rev. (Orlando)22(1), 6–20 (2008).
  • Kuehl P, Zhang J, Lin Y et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet.27(4), 383–391 (2001).
  • Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics5(3), 243–272 (2004).
  • Macphee IA, Fredericks S, Tai T et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome P4503A5 and P-glycoprotein correlate with dose requirement. Transplantation74(11), 1486–1489 (2002).
  • MacPhee IA, Fredericks S, Tai T et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am. J. Transplant.4(6), 914–919 (2004).
  • Tsuchiya N, Satoh S, Tada H et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation78(8), 1182–1187 (2004).
  • Goto M, Masuda S, Kiuchi T et al. CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics14(7), 471–478 (2004).
  • Haufroid V, Mourad M, Van Kerckhove V et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on ciclosporin and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics14(3), 147–154 (2004).
  • Zheng H, Zeevi A, Schuetz E et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J. Clin. Pharmacol.44(2), 135–140 (2004).
  • Hesselink DA, van Schaik RH, van der Heiden IP et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors ciclosporin and tacrolimus. Clin. Pharmacol. Ther.74(3), 245–254 (2003).
  • Zheng H, Webber S, Zeevi A et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am. J. Transplant.3(4), 477–483 (2003).
  • Thervet E, Anglicheau D, King B et al. Impact of cytochrome P450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation76(8), 1233–1235 (2003).
  • Tada H, Tsuchiya N, Satoh S et al. Impact of CYP3A5 and MDR1(ABCB1) C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplant. Proc.37(4), 1730–1732 (2005).
  • de Jonge H, Kuypers DRJ. Pharmacogenetics in solid organ transplantation: current status and future directions. Transplant. Rev.22(1), 6–20 (2008).
  • Zheng HX, Webber S, Scheutz E et al. Cytochrome P4503A and TNF-a genotypes are associated with tacrolimus dosing in pediatric heart transplant patients. Hum. Immunol.63, S15 (2002).
  • Ferraresso M, Tirelli A, Ghio L et al. Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients. Pediatr. Transplant.11(3), 296–300 (2007).
  • Min DI, Ellingrod VL, Marsh S, McLeod H. CYP3A5 polymorphism and the ethnic differences in ciclosporin pharmacokinetics in healthy subjects. Ther. Drug Monit.26(5), 524–528 (2004).
  • Qiu XY, Jiao Z, Zhang M et al. Association of MDR1, CYP3A4*18B, and CYP3A5*3polymorphisms with ciclosporin pharmacokinetics in Chinese renal transplant recipients. Eur J. Clin. Pharmacol.64(11), 1069–1084 (2008).
  • Anglicheau D, Le Corre D, Lechaton S et al. Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am. J. Transplant.5(3), 595–603 (2005).
  • Le Meur Y, Djebli N, Szelag JC et al.CYP3A5*3influences sirolimus oral clearance in de novo and stable renal transplant recipients. Clin. Pharmacol. Ther.80(1), 51–60 (2006).
  • Djebli N, Rousseau A, Hoizey G et al. Sirolimus population pharmacokinetic/pharmacogenetic analysis and bayesian modelling in kidney transplant recipients. Clin. Pharmacokinet.45(11), 1135–1148 (2006).
  • Picard N, Djebli N, Sauvage FL, Marquet P. Metabolism of sirolimus in the presence or absence of ciclosporin by genotyped human liver microsomes and recombinant cytochromes P450 3A4 and 3A5. Drug Metab. Dispos.35(3), 350–355 (2007).
  • Kuypers DR, de Jonge H, Naesens M, Vanrenterghem Y. Effects of CYP3A5 and MDR1 single nucleotide polymorphisms on drug interactions between tacrolimus and fluconazole in renal allograft recipients. Pharmacogenet. Genomics18(10), 861–868 (2008).
  • Miura M, Inoue K, Satoh S et al. Influence of cytochrome P450 (CYP) 3A5 polymorphisms on the pharmacokinetics of lansoprazole enantiomers in CYP2C19 extensive metaboliser renal transplant recipients. Clin. Drug Investig.27(4), 251–258 (2007).
  • Burckart GJ, Liu XI. Pharmacogenetics in transplant patients: can it predict pharmacokinetics and pharmacodynamics? Ther. Drug Monit.28(1), 23–30 (2006).
  • Suzuki Y, Homma M, Doki K, Itagaki F, Kohda Y. Impact of CYP3A5 genetic polymorphism on pharmacokinetics of tacrolimus in healthy Japanese subjects. Br. J. Clin. Pharmacol.66(1), 154–155 (2008).
  • Fukudo M, Yano I, Masuda S et al. Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clin. Pharmacol. Ther.80(4), 331–345 (2006).
  • Li D, Lu W, Zhu JY, Gao J, Lou YQ, Zhang GL. Population pharmacokinetics of tacrolimus and CYP3A5, MDR1 and IL-10 polymorphisms in adult liver transplant patients. J. Clin. Pharm. Ther.32(5), 505–515 (2007).
  • Fukudo M, Yano I, Yoshimura A et al. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet. Genomics18(5), 413–423 (2008).
  • Wang J, Figurski M, Shaw LM, Burckart GJ. The impact of P-glycoprotein and Mrp2 on mycophenolic acid levels in mice. Transpl. Immunol.19(3–4), 192–196 (2008).
  • Wang J, Zeevi A, McCurry K et al. Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5*3/*3 non-expressors. Transpl. Immunol.15(3), 235–240 (2006).
  • Wang J, Yang JW, Zeevi A et al.IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin. Pharmacol. Ther.83(5), 711–717 (2008).
  • Wang J, Zeevi A, Webber S et al. A novel variant L263F in human inosine 5’-monophosphate dehydrogenase 2 is associated with diminished enzyme activity. Pharmacogenet. Genomics17(4), 283–290 (2007).
  • Lesko LJ, Woodcock J. Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat. Rev. Drug Discov.3(9), 763–769 (2004).
  • Fredericks S, Moreton M, Reboux S et al. Multidrug resistance gene-1 (MDR-1 ) haplotypes have a minor influence on tacrolimus dose requirements. Transplantation82(5), 705–708 (2006).
  • Hesselink DA, van Schaik RH, van Agteren M et al. CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Pharmacogenet. Genomics18(4), 339–348 (2008).
  • Macphee IA, Fredericks S, Mohamed M et al. Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in Whites and South Asians. Transplantation79(4), 499–502 (2005).
  • Mai I, Perloff ES, Bauer S et al. MDR1 haplotypes derived from exons 21 and 26 do not affect the steady-state pharmacokinetics of tacrolimus in renal transplant patients. Br. J. Clin. Pharmacol.58(5), 548–553 (2004).
  • Roy JN, Barama A, Poirier C, Vinet B, Roger M. CYP3A4, CYP3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet. Genomics16(9), 659–665 (2006).
  • Mourad M, Mourad G, Wallemacq P et al. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation80(7), 977–984 (2005).
  • Tirelli S, Ferraresso M, Ghio L et al. The effect of CYP3A5 polymorphisms on the pharmacokinetics of tacrolimus in adolescent kidney transplant recipients. Med. Sci. Monit.14(5), CR251–CR254 (2008).
  • Zhang X, Liu ZH, Zheng JM et al. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clin. Transplant.19(5), 638–643 (2005).
  • Zhao Y, Song M, Guan D et al. Genetic polymorphisms of CYP3A5 genes and concentration of the ciclosporin and tacrolimus. Transplant. Proc.37(1), 178–181 (2005).
  • Haufroid V, Wallemacq P, VanKerckhove V et al.CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am. J. Transplant.6(11), 2706–2713 (2006).
  • Choi JH, Lee YJ, Jang SB, Lee JE, Kim KH, Park K. Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects. Br J. Clin. Pharmacol.64(2), 185–191 (2007).
  • Kuypers DR, de Jonge H, Naesens M, Lerut E, Verbeke K, Vanrenterghem Y. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin. Pharmacol. Ther.82(6), 711–725 (2007).
  • Anglicheau D, Thervet E, Etienne I et al.CYP3A5 and MDR1 genetic polymorphisms and ciclosporin pharmacokinetics after renal transplantation. Clin. Pharmacol. Ther.75(5), 422–433 (2004).
  • Hesselink DA, van Gelder T, van Schaik RH et al. Population pharmacokinetics of ciclosporin in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin. Pharmacol. Ther.76(6), 545–556 (2004).
  • Hu YF, Qiu W, Liu ZQ et al. Effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDR1 on ciclosporin pharmacokinetics after renal transplantation. Clin. Exp. Pharmacol. Physiol.33(11), 1093–1098 (2006).
  • Fredericks S, Jorga A, MacPhee IA et al. Multi-drug resistance gene-1 (MDR-1 ) haplotypes and the CYP3A5*1 genotype have no influence on ciclosporin dose requirements as assessed by C0 or C2 measurements. Clin. Transplant.21(2), 252–257 (2007).
  • Kreutz R, Zurcher H, Kain S, Martus P, Offermann G, Beige J. The effect of variable CYP3A5 expression on ciclosporin dosing, blood pressure and long-term graft survival in renal transplant patients. Pharmacogenetics14(10), 665–671 (2004).
  • Rivory LP, Qin H, Clarke SJ et al. Frequency of cytochrome P450 3A4 variant genotype in transplant population and lack of association with cyclosporin clearance. Eur J. Clin. Pharmacol.56(5), 395–398 (2000).
  • von Ahsen N, Richter M, Grupp C, Ringe B, Oellerich M, Armstrong VW. No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin. Chem.47(6), 1048–1052 (2001).
  • Miao LY, Huang CR, Hou JQ, Qian MY. Association study of ABCB1 and CYP3A5 gene polymorphisms with sirolimus trough concentration and dose requirements in Chinese renal transplant recipients. Biopharm. Drug Dispos.29(1), 1–5 (2008).
  • Renders L, Frisman M, Ufer M et al.CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin. Pharmacol. Ther.81(2), 228–234 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.