202
Views
24
CrossRef citations to date
0
Altmetric
Review

Tools for stools: the challenge of assessing human intestinal microbiota using molecular diagnostics

, , &
Pages 353-365 | Published online: 09 Jan 2014

References

  • Xu J, Gordon JI. Inaugural article: honor thy symbionts. Proc. Natl Acad. Sci. USA100(18), 10452–10459 (2003).
  • Goodacre R. Metabolomics of a superorganism. J. Nutr.137(1 Suppl.), 259S–266S (2007).
  • Frank DN, Pace NR. Gastrointestinal microbiology enters the metagenomics era. Curr. Opin. Gastroenterol.24(1), 4–10 (2008).
  • Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol.6(11), e280 (2008).
  • Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol.5(7), e177 (2007).
  • De La Cochetiere MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Dore J. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J. Clin. Microbiol.43(11), 5588–5592 (2005).
  • Mai V, Morris JG Jr. Colonic bacterial flora: changing understandings in the molecular age. J. Nutr.134(2), 459–464 (2004).
  • Eckburg PB, Bik EM, Bernstein CN et al. Diversity of the human intestinal microbial flora. Science308(5728), 1635–1638 (2005).
  • Peek RM Jr, Blaser MJ. Helicobacter pyloriandgastrointestinal tract adenocarcinomas. Nat. Rev. Cancer2(1), 28–37 (2002).
  • Aas JA, Griffen AL, Dardis SR et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol.46(4), 1407–1417 (2008).
  • Saito D, Leonardo Rde T, Rodrigues JL, Tsai SM, Hofling JF, Goncalves RB. Identification of bacteria in endodontic infections by sequence analysis of 16S rDNA clone libraries. J. Med. Microbiol.55(Pt 1), 101–107 (2006).
  • Sakamoto M, Rocas IN, Siqueira JF Jr, Benno Y. Molecular analysis of bacteria in asymptomatic and symptomatic endodontic infections. Oral Microbiol. Immunol.21(2), 112–122 (2006).
  • Kroes I, Lepp PW, Relman DA. Bacterial diversity within the human subgingival crevice. Proc. Natl Acad. Sci. USA96(25), 14547–14552 (1999).
  • D’Aiuto F, Parkar M, Nibali L, Suvan J, Lessem J, Tonetti MS. Periodontal infections cause changes in traditional and novel cardiovascular risk factors: results from a randomized controlled clinical trial. Am. Heart J.151(5), 977–984 (2006).
  • Mager DL, Haffajee AD, Devlin PM, Norris CM, Posner MR, Goodson JM. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J. Transl. Med.3, 27 (2005).
  • Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol.4(11), 430–435 (1996).
  • Hooper LV, Midtvedt T, Gordon JI. How host–microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr.22, 283–307 (2002).
  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell118(2), 229–241 (2004).
  • Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol.4(3), 269–273 (2003).
  • Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl Acad. Sci. USA99(24), 15451–15455 (2002).
  • Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur. J. Cancer Prev.6(Suppl. 1), S43–45 (1997).
  • Backhed F, Ding H, Wang T et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA101(44), 15718–15723 (2004).
  • Cummings JH, Stephen AM. Carbohydrate terminology and classification. Eur. J. Clin. Nutr.61(Suppl. 1), S5–S18 (2007).
  • Samuel BS, Hansen EE, Manchester JK et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc. Natl Acad. Sci. USA104(25), 10643–10648 (2007).
  • Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc. Nutr. Soc.62(1), 67–72 (2003).
  • Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol.40(3), 235–243 (2006).
  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther.27(2), 104–119 (2008).
  • McGarr SE, Ridlon JM, Hylemon PB. Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. J. Clin. Gastroenterol.39(2), 98–109 (2005).
  • Boyle P, Ferlay J. Cancer incidence and mortality in Europe, 2004. Ann. Oncol.16(3), 481–488 (2005).
  • O’Keefe SJ, Kidd M, Espitalier-Noel G, Owira P. Rarity of colon cancer in Africans is associated with low animal product consumption, not fiber. Am. J. Gastroenterol.94(5), 1373–1380 (1999).
  • Sugimura T. Nutrition and dietary carcinogens. Carcinogenesis21(3), 387–395 (2000).
  • Pan SY, DesMeules M. Energy intake, physical activity, energy balance, and cancer: epidemiologic evidence. Methods Mol. Biol.472, 191–215 (2009).
  • Berr F, Kullak-Ublick GA, Paumgartner G, Munzing W, Hylemon PB. 7α-dehydroxylating bacteria enhance deoxycholic acid input and cholesterol saturation of bile in patients with gallstones. Gastroenterology111(6), 1611–1620 (1996).
  • Ball LM, Rafter JJ, Gustafsson JA, Gustafsson BE, Kohan MJ, Lewtas J. Formation of mutagenic urinary metabolites from 1-nitropyrene in germ-free and conventional rats: role of the gut flora. Carcinogenesis12(1), 1–5 (1991).
  • Van Tassel RL, MacDonald DK, Wilkins TD. Production of a fecal mutagen by Bacteroides spp. Infect. Immun.37(3), 975–980 (1982).
  • Gibson GR, Macfarlane GT, Cummings JH. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut34(4), 437–439 (1993).
  • Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins HR. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res.4(1), 9–14 (2006).
  • Roediger WE, Duncan A, Kapaniris O, Millard S. Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology104(3), 802–809 (1993).
  • de Kok TM, van Maanen JM. Evaluation of fecal mutagenicity and colorectal cancer risk. Mutat. Res.463(1), 53–101 (2000).
  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature444(7122), 1022–1023 (2006).
  • Duncan SH, Lobley GE, Holtrop G et al. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. (Lond.)32(11), 1720–1724 (2008).
  • Manichanh C, Rigottier-Gois L, Bonnaud E et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut55(2), 205–211 (2006).
  • Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA104(34), 13780–13785 (2007).
  • O’Keefe SJ. Nutrition and colonic health: the critical role of the microbiota. Curr. Opin. Gastroenterol.24(1), 51–58 (2008).
  • Penders J, Thijs C, van den Brandt PA et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut56(5), 661–667 (2007).
  • Macfarlane S, Macfarlane GT, Cummings JH. Review article: prebiotics in the gastrointestinal tract. Aliment. Pharmacol. Ther.24(5), 701–714 (2006).
  • Scanlan PD, Marchesi JR. Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J.2(12), 1183–1193 (2008).
  • Strocchi A, Furne JK, Ellis CJ, Levitt MD. Competition for hydrogen by human faecal bacteria: evidence for the predominance of methane producing bacteria. Gut32(12), 1498–1501 (1991).
  • Mihajlovski A, Alric M, Brugere JF. A putative new order of methanogenic archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene. Res. Microbiol.159(7–8), 516–521 (2008).
  • Conway de Macario E, Macario AJ. Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis. Int. J. Med. Microbiol.299(2), 99–108 (2009).
  • Breitbart M, Hewson I, Felts B et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol.185(20), 6220–6223 (2003).
  • Favier CF, Vaughan EE, De Vos WM, Akkermans AD. Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol.68(1), 219–226 (2002).
  • Hopkins MJ, Macfarlane GT, Furrie E, Fite A, Macfarlane S. Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses. FEMS Microbiol. Ecol.54(1), 77–85 (2005).
  • Penders J, Thijs C, Vink C et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics118(2), 511–521 (2006).
  • Turnbaugh PJ, Hamady M, Yatsunenko T et al. A core gut microbiome in obese and lean twins. Nature457(7228), 480–484 (2008).
  • Toivanen P, Vaahtovuo J, Eerola E. Influence of major histocompatibility complex on bacterial composition of fecal flora. Infect. Immun.69(4), 2372–2377 (2001).
  • Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol.43(11), 5721–5732 (2005).
  • Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proc. Natl Acad. Sci. USA101(12), 4250–4255 (2004).
  • Savage DC. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol.31, 107–133 (1977).
  • Bik EM, Eckburg PB, Gill SR et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA103(3), 732–737 (2006).
  • Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut29(8), 1035–1041 (1988).
  • Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol.70(6), 443–459 (1991).
  • Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J. Med. Microbiol.54(Pt 11), 1093–1101 (2005).
  • Aminov RI, Walker AW, Duncan SH, Harmsen HJ, Welling GW, Flint HJ. Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl. Environ. Microbiol.72(9), 6371–6376 (2006).
  • Finegold SM, Attebery HR, Sutter VL. Effect of diet on human fecal flora: comparison of Japanese and American diets. Am. J. Clin. Nutr.27(12), 1456–1469 (1974).
  • Suau A, Bonnet R, Sutren M et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol.65(11), 4799–4807 (1999).
  • Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Dore J. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol.66(5), 2263–2266 (2000).
  • Rajilic-Stojanovic M, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ. Microbiol.9(9), 2125–2136 (2007).
  • Pedros-Alio C. Ecology. Dipping into the rare biosphere. Science315(5809), 192–193 (2007).
  • Leadbetter JR. Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st Century laboratory. Curr. Opin. Microbiol.6(3), 274–281 (2003).
  • Zengler K, Toledo G, Rappe M et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA99(24), 15681–15686 (2002).
  • Zengler K, Walcher M, Clark G et al. High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol.397, 124–130 (2005).
  • Frohlich J, Konig H. New techniques for isolation of single prokaryotic cells. FEMS Microbiol. Rev.24(5), 567–572 (2000).
  • Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiology Today33(4), 152–155 (2006).
  • DeLong EF, Pace NR. Environmental diversity of bacteria and archaea. Syst. Biol.50(4), 470–478 (2001).
  • Amann RI, Krumholz L, Stahl DA. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol.172(2), 762–770 (1990).
  • Castillo M, Skene G, Roca M et al. Application of 16S rRNA gene-targetted fluorescence in situ hybridization and restriction fragment length polymorphism to study porcine microbiota along the gastrointestinal tract in response to different sources of dietary fibre. FEMS Microbiol. Ecol.59(1), 138–146 (2007).
  • Tuohy KM, Pinart-Gilberga M, Jones M, Hoyles L, McCartney AL, Gibson GR. Survivability of a probiotic Lactobacillus casei in the gastrointestinal tract of healthy human volunteers and its impact on the faecal microflora. J. Appl. Microbiol.102(4), 1026–1032 (2007).
  • Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol.68(6), 3094–3101 (2002).
  • Ouverney CC, Fuhrman JA. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ . Appl. Environ. Microbiol.65(4), 1746–1752 (1999).
  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science293(5529), 484–487 (2001).
  • Bonnet R, Suau A, Dore J, Gibson GR, Collins MD. Differences in rDNA libraries of faecal bacteria derived from 10- and 25-cycle PCRs. Int. J. Syst. Evol. Microbiol., 52(Pt 3), 757–763 (2002).
  • Forney LJ, Zhou X, Brown CJ. Molecular microbial ecology: land of the one-eyed king. Curr. Opin. Microbiol.7(3), 210–220 (2004).
  • Kent AD, Smith DJ, Benson BJ, Triplett EW. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl. Environ. Microbiol.69(11), 6768–6776 (2003).
  • Dicksved J, Halfvarson J, Rosenquist M et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J.2(7), 716–727 (2008).
  • Shaver YJ, Nagpal ML, Fox KF, Rudner R, Fox A. Variation in 16S–23S rRNA intergenic spacer regions among Bacillus subtilis 168 isolates. Mol. Microbiol.42(1), 101–109 (2001).
  • Ott SJ, Musfeldt M, Wenderoth DF et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut53(5), 685–693 (2004).
  • Scanlan PD, Shanahan F, Clune Y et al. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ. Microbiol.10(3), 789–798 (2008).
  • Brousseau R, Hill JE, Prefontaine G, Goh SH, Harel J, Hemmingsen SM. Streptococcus suis serotypes characterized by analysis of chaperonin 60 gene sequences. Appl. Environ. Microbiol.67(10), 4828–4833 (2001).
  • Martin R, Langa S, Reviriego C et al. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr.143(6), 754–758 (2003).
  • Allen EE, Banfield JF. Community genomics in microbial ecology and evolution. Nat. Rev. Microbiol.3(6), 489–498 (2005).
  • Venter JC, Remington K, Heidelberg JF et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science304(5667), 66–74 (2004).
  • Bentley DR. Whole-genome re-sequencing. Curr. Opin. Genet. Dev.16(6), 545–552 (2006).
  • Shendure J, Porreca GJ, Reppas NB et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science309(5741), 1728–1732 (2005).
  • Sogin ML, Morrison HG, Huber JA et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl Acad. Sci. USA103(32), 12115–12120 (2006).
  • Loy A, Bodrossy L. Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin. Chim. Acta363(1–2), 106–119 (2006).
  • Bodrossy L, Sessitsch A. Oligonucleotide microarrays in microbial diagnostics. Curr. Opin. Microbiol.7(3), 245–254 (2004).
  • Militon C, Rimour S, Missaoui M et al. PhylArray: phylogenetic probe design algorithm for microarray. Bioinformatics23(19), 2550–2557 (2007).
  • Rimour S, Hill D, Militon C, Peyret P. GoArrays: highly dynamic and efficient microarray probe design. Bioinformatics21(7), 1094–1103 (2005).
  • Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J. Microarray applications in microbial ecology research. Microb. Ecol.52(2), 159–175 (2006).
  • Guschin D, Yershov G, Zaslavsky A et al. Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal. Biochem.250(2), 203–211 (1997).
  • Wilson KH, Wilson WJ, Radosevich JL et al. High-density microarray of small-subunit ribosomal DNA probes. Appl. Environ. Microbiol.68(5), 2535–2541 (2002).
  • DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb. Ecol.53(3), 371–383 (2007).
  • Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol.5(7), 566–582 (2003).
  • Rhee SK, Liu X, Wu L, Chong SC, Wan X, Zhou J. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl. Environ. Microbiol.70(7), 4303–4317 (2004).
  • Wu L, Thompson DK, Liu X et al. Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ. Sci. Technol.38(24), 6775–6782 (2004).
  • Sebat JL, Colwell FS, Crawford RL. Metagenomic profiling: microarray analysis of an environmental genomic library. Appl. Environ. Microbiol.69(8), 4927–4934 (2003).
  • Dong Y, Glasner JD, Blattner FR, Triplett EW. Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K-12 open reading frames. Appl. Environ. Microbiol.67(4), 1911–1921 (2001).
  • Adamczyk J, Hesselsoe M, Iversen N et al. The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol.69(11), 6875–6887 (2003).
  • Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut57(11), 1605–1615 (2008).
  • Gill SR, Pop M, Deboy RT et al. Metagenomic analysis of the human distal gut microbiome. Science312(5778), 1355–1359 (2006).
  • Wang RF, Beggs ML, Robertson LH, Cerniglia CE. Design and evaluation of oligonucleotide-microarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol. Lett.213(2), 175–182 (2002).
  • Jin DZ, Wen SY, Chen SH, Lin F, Wang SQ. Detection and identification of intestinal pathogens in clinical specimens using DNA microarrays. Mol. Cell. Probes20(6), 337–347 (2006).
  • Marteau P, Pochart P, Dore J, Bera-Maillet C, Bernalier A, Corthier G. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol.67(10), 4939–4942 (2001).
  • Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol.68(7), 3401–3407 (2002).
  • Pochart P, Lemann F, Flourie B, Pellier P, Goderel I, Rambaud JC. Pyxigraphic sampling to enumerate methanogens and anaerobes in the right colon of healthy humans. Gastroenterology105(5), 1281–1285 (1993).
  • von Wintzingerode F, Gobel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev.21(3), 213–229 (1997).
  • Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques36(5), 808–812 (2004).
  • Zoetendal EG, Booijink CC, Klaassens ES et al. Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nat. Protoc.1(2), 954–959 (2006).
  • Zoetendal EG, Ben-Amor K, Akkermans AD, Abee T, de Vos WM. DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract. Syst. Appl. Microbiol.24(3), 405–410 (2001).
  • Corinaldesi C, Danovaro R, Dell’Anno A. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments. Appl. Environ. Microbiol.71(1), 46–50 (2005).
  • Kang S, Denman SE, Morrison M, Yu Z, McSweeney CS. An efficient RNA extraction method for estimating gut microbial diversity by polymerase chain reaction. Curr. Microbiol. DOI: 10.1007/s00284-008-9345-z (2009) (Epub ahead of print).
  • Farrelly V, Rainey FA, Stackebrandt E. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol.61(7), 2798–2801 (1995).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.