130
Views
47
CrossRef citations to date
0
Altmetric
Review

Current molecular diagnostics of breast cancer and the potential incorporation of microRNA

, , , , &
Pages 455-466 | Published online: 09 Jan 2014

References

  • Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J. Clin.55(2), 74–108 (2005).
  • Hortobagyi GN, de la Garza Salazar J, Pritchard K et al. The global breast cancer burden: variations in epidemiology and survival. Clin. Breast Cancer6(5), 391–401 (2005).
  • Parkin DM, Fernandez LM. Use of statistics to assess the global burden of breast cancer. Breast J.12(Suppl. 1), S70–S80 (2006).
  • Breast Cancer Screening. IARC Press, Lyon, France (2002).
  • Groot MT, Baltussen R, Uyl-de Groot CA, Anderson BO, Hortobagyi GN. Costs and health effects of breast cancer interventions in epidemiologically different regions of Africa, North America, and Asia. Breast J.12(Suppl. 1), S81–S90 (2006).
  • Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv. Exp. Med. Biol.608, 1–22 (2007).
  • Moore S. Managing treatment side effects in advanced breast cancer. Semin. Oncol. Nurs.23(4 Suppl. 2), S23–S30 (2007).
  • Buchholz TA. Radiation therapy for early-stage breast cancer after breast-conserving surgery. N. Engl. J. Med.360(1), 63–70 (2009).
  • NIH consensus conference. Treatment of early-stage breast cancer. JAMA265(3), 391–395 (1991).
  • National Institutes of Health Consensus Development Conference statement: adjuvant therapy for breast cancer, November 1–3, 2000. J. Natl Cancer Inst. Monogr.30, 5–15 (2001).
  • Eifel P, Axelson JA, Costa J et al. National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1–3, 2000. J. Natl Cancer Inst.93(13), 979–989 (2001).
  • Consensus conference 2000: adjuvant therapy for breast cancer. National Institutes of Health Consensus Development Conference Statement November 1–3, 2000. Cancer Control8(1), 55 (2001).
  • Buzdar A. The place of chemotherapy in the treatment of early breast cancer. Br. J. Cancer78(Suppl. 4), 16–20 (1998).
  • Dowsett M, Allred C, Knox J et al. Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER-2) status with recurrence in the Arimidex, Tamoxifen, Alone or in Combination trial. J. Clin. Oncol.26(7), 1059–1065 (2008).
  • Grann VR, Troxel AB, Zojwalla NJ, Jacobson JS, Hershman D, Neugut AI. Hormone receptor status and survival in a population-based cohort of patients with breast carcinoma. Cancer103(11), 2241–2251 (2005).
  • McGuire WL, De La Garza M, Chamness GC. Evaluation of estrogen receptor assays in human breast cancer tissue. Cancer Res.37(3), 637–639 (1977).
  • Hull DF 3rd, Clark GM, Osborne CK, Chamness GC, Knight WA 3rd, McGuire WL. Multiple estrogen receptor assays in human breast cancer. Cancer Res.43(1), 413–416 (1983).
  • Greene GL, Sobel NB, King WJ, Jensen EV. Immunochemical studies of estrogen receptors. J. Steroid Biochem.20(1), 51–56 (1984).
  • Jensen EV, Greene GL, DeSombre ER. Immunochemical studies of estrogen receptors. Prog. Clin. Biol. Res.249, 283–305 (1987).
  • Taylor CR, Shi SR, Chaiwun B, Young L, Imam SA, Cote RJ. Strategies for improving the immunohistochemical staining of various intranuclear prognostic markers in formalin-paraffin sections: androgen receptor, estrogen receptor, progesterone receptor, p53 protein, proliferating cell nuclear antigen, and Ki-67 antigen revealed by antigen retrieval techniques. Hum. Pathol.25(3), 263–270 (1994).
  • Layfield LJ, Gupta D, Mooney EE. Assessment of tissue estrogen and progesterone receptor levels: a survey of current practice, techniques, and quantitation methods. Breast J.6(3), 189–196 (2000).
  • King CR, Kraus MH, Aaronson SA. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science229(4717), 974–976 (1985).
  • Paik S, Hazan R, Fisher ER et al. Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J. Clin. Oncol.8(1), 103–112 (1990).
  • van de Vijver MJ, Mooi WJ, Wisman P, Peterse JL, Nusse R. Immunohistochemical detection of the neu protein in tissue sections of human breast tumors with amplified neu DNA. Oncogene2(2), 175–178 (1980).
  • Slamon DJ. Proto-oncogenes and human cancers. N. Engl. J. Med.317(15), 955–957 (1987).
  • Wolff AC, Hammond ME, Schwartz JN et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch. Pathol. Lab. Med.131(1), 18 (2007).
  • Harris L, Fritsche H, Mennel R et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol.25(33), 5287–5312 (2007).
  • Ma XJ, Wang Z, Ryan PD et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell5(6), 607–616 (2004).
  • Jansen MP, Sieuwerts AM, Look MP et al. HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J. Clin. Oncol.25(6), 662–668 (2007).
  • Ma XJ, Salunga R, Dahiya S et al. A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin. Cancer Res.14(9), 2601–2608 (2008).
  • van ‘t Veer LJ, Dai H, van de Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature415(6871), 530–536 (2002).
  • Buyse M, Loi S, van ‘t Veer L et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Inst.98(17), 1183–1192 (2006).
  • Glas AM, Floore A, Delahaye LJ et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics7, 278 (2006).
  • Cronin M, Sangli C, Liu ML et al. Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin. Chem.53(6), 1084–1091 (2007).
  • Paik S, Shak S, Tang G et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med.351(27), 2817–2826 (2004).
  • Paik S, Tang G, Shak S et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol.24(23), 3726–3734 (2006).
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75(5), 843–854 (1993).
  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science294(5543), 853–858 (2001).
  • Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294(5543), 858–862 (2001).
  • Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science294(5543), 862–864 (2001).
  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res.36, D154–D158 (2008).
  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res.34, D140–D144 (2006).
  • Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res.32, D109–D111 (2004).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2), 281–297 (2004).
  • Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17(24), 3011–3016 (2003).
  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409(6818), 363–366 (2001).
  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293(5531), 834–838 (2001).
  • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell123(4), 631–640 (2005).
  • Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol.3(3), e85 (2005).
  • Bernstein E, Kim SY, Carmell MA et al. Dicer is essential for mouse development. Nat. Genet.35(3), 215–217 (2003).
  • Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science303(5654), 83–86 (2004).
  • Miska EA. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev.15(5), 563–568 (2005).
  • Miska EA, Alvarez-Saavedra E, Townsend M et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol.5(9), R68 (2004).
  • Blenkiron C, Goldstein LD, Thorne NP et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol.8(10), R214 (2007).
  • Verghese ET, Hanby AM, Speirs V, Hughes TA. Small is beautiful: microRNAs and breast cancer-where are we now? J. Pathol.215(3), 214–221 (2008).
  • Sassen S, Miska EA, Caldas C. MicroRNA: implications for cancer. Virchows Arch.452(1), 1–10 (2008).
  • Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell113(1), 25–36 (2003).
  • Calin GA, Sevignani C, Dumitru CD et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA101(9), 2999–3004 (2004).
  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat. Rev. Cancer6(11), 857–866 (2006).
  • Gaur A, Jewell DA, Liang Y et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res.67(6), 2456–2468 (2007).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature435(7043), 834–838 (2005).
  • Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99(24), 15524–15529 (2002).
  • He L, Thomson JM, Hemann MT et al. A microRNA polycistron as a potential human oncogene. Nature435(7043), 828–833 (2005).
  • Ota A, Tagawa H, Karnan S et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res.64(9), 3087–3095 (2004).
  • Iorio MV, Ferracin M, Liu CG et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.65(16), 7065–7070 (2005).
  • Yan LX, Huang XF, Shao Q et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA14(11), 2348–2360 (2008).
  • Lu Z, Liu M, Stribinskis V et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene27(31), 4373–4379 (2008).
  • Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res.18(3), 350–359 (2008).
  • Sempere LF, Christensen M, Silahtaroglu A et al. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res.67(24), 11612–11620 (2007).
  • Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem.282(19), 14328–14336 (2007).
  • Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene26(19), 2799–2803 (2007).
  • Volinia S, Calin GA, Liu CG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103(7), 2257–2261 (2006).
  • Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem.283(2), 1026–1033 (2008).
  • Huang GL, Zhang XH, Guo GL et al. Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol. Rep.21(3), 673–679 (2009).
  • Qian B, Katsaros D, Lu L et al. High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-β1. Breast Cancer Res. Treat. (2008) (Epub ahead of print).
  • Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature449(7163), 682–688 (2007).
  • Gee HE, Camps C, Buffa FM et al. MicroRNA-10b and breast cancer metastasis. Nature455(7216), E8–E9 (2008).
  • Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H. miR-206 Expression is down-regulated in estrogen receptor α-positive human breast cancer. Cancer Res.68(13), 5004–5008 (2008).
  • Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERα) and represses ERα messenger RNA and protein expression in breast cancer cell lines. Mol. Endocrinol.21(5), 1132–1147 (2007).
  • Tavazoie SF, Alarcon C, Oskarsson T et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature451(7175), 147–152 (2008).
  • Mattie MD, Benz CC, Bowers J et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer5, 24 (2006).
  • Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J. Biol. Chem.282(2), 1479–1486 (2007).
  • Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res.66(3), 1277–1281 (2006).
  • Abdelrahim M, Samudio I, Smith R 3rd, Burghardt R, Safe S. Small inhibitory RNA duplexes for Sp1 mRNA block basal and estrogen-induced gene expression and cell cycle progression in MCF-7 breast cancer cells. J. Biol. Chem.277(32), 28815–28822 (2002).
  • Murray GI, Taylor MC, McFadyen MC et al. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res.57(14), 3026–3031 (1997).
  • Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res.66(18), 9090–9098 (2006).
  • Bertucci F, Birnbaum D. Reasons for breast cancer heterogeneity. J. Biol.7(2), 6 (2008).
  • Camps C, Buffa FM, Colella S et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res.14(5), 1340–1348 (2008).
  • Foekens JA, Sieuwerts AM, Smid M et al. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc. Natl Acad. Sci. USA105(35), 13021–13026 (2008).
  • Shi M, Guo N. MicroRNA expression and its implications for the diagnosis and therapeutic strategies of breast cancer. Cancer Treat. Rev. (2009).
  • Lowery AJ, Miller N, McNeill RE, Kerin MJ. MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin. Cancer Res.14(2), 360–365 (2008).
  • Kovalchuk O, Filkowski J, Meservy J et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther.7(7), 2152–2159 (2008).
  • Miller TE, Ghoshal K, Ramaswamy B et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem.283(44), 29897–29903 (2008).
  • Zhao JJ, Lin J, Yang H et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem.283(45), 31079–31086 (2008).
  • Davoren PA, McNeill RE, Lowery AJ, Kerin MJ, Miller N. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol. Biol.9, 76 (2008).
  • Zhang X, Chen J, Radcliffe T, Lebrun DP, Tron VA, Feilotter H. An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples. J. Mol. Diagn.10(6), 513–519 (2008).
  • Li J, Smyth P, Flavin R et al. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol.7, 36 (2007).
  • Siebolts U, Varnholt H, Drebber U, Dienes HP, Wickenhauser C, Odenthal M. Tissues from routine pathology archives are suitable for microRNA analyses by quantitative PCR. J. Clin. Pathol.62(1), 84–88 (2009).
  • Cristofanilli M, Budd GT, Ellis MJ et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med.351(8), 781–791 (2004).
  • Cristofanilli M, Hayes DF, Budd GT et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J. Clin. Oncol.23(7), 1420–1430 (2005).
  • Ralph DA, Zhao LP, Aston CE et al. Age-specific association of steroid hormone pathway gene polymorphisms with breast cancer risk. Cancer109(10), 1940–1948 (2007).
  • Viale G, Maiorano E, Pruneri G et al. Predicting the risk for additional axillary metastases in patients with breast carcinoma and positive sentinel lymph node biopsy. Ann. Surg.241(2), 319–325 (2005).
  • Suijkerbuijk KP, van der Wall E, Vooijs M, van Diest PJ. Molecular analysis of nipple fluid for breast cancer screening. Pathobiology75(2), 149–152 (2008).
  • Sharma P, Sahni NS, Tibshirani R et al. Early detection of breast cancer based on gene-expression patterns in peripheral blood cells. Breast Cancer Res.7(5), R634–44 (2005).
  • Yu F, Yao H, Zhu P et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell131(6), 1109–1123 (2007).
  • Iorio MV, Casalini P, Piovan C et al. microRNA-205 regulates HER3 in human breast cancer. Cancer Res.69(6), 2195–2200 (2009).
  • Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res.19(4), 439–448 (2009).
  • Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol. Pharmacol. (2009).
  • Huang Q, Gumireddy K, Schrier M et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol.10(2), 202–210 (2008).
  • Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res.67(22), 11001–11011 (2007).
  • Yu Z, Wang C, Wang M et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J. Cell Biol.182(3), 509–517 (2008).
  • Lehmann U, Hasemeier B, Christgen M et al. Epigenetic inactivation of microRNA gene hsa-mir-9–1 in human breast cancer. J. Pathol.214(1), 17–24 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.