218
Views
25
CrossRef citations to date
0
Altmetric
Review

Mechanisms of resistance to ionizing radiation in rectal cancer

, &
Pages 469-480 | Published online: 09 Jan 2014

References

  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2008. CA Cancer J. Clin.58, 71–96 (2008).
  • Wanebo HJ, Koness RJ, Vezeridis MP et al. Pelvic resection of recurrent rectal cancer. Ann. Surg.220, 586–595 (1994).
  • Chari RS, Tyler DS, Anscher MS et al. Preoperative radiation and chemotherapy in the treatment of adenocarcinoma of the rectum. Ann. Surg.221, 778–786 (1995).
  • Morino M, Parini U, Allaix M. E et al. Male sexual and urinary function after laparoscopic total mesorectal excision. Surg. Endosc.23(6), 1233–1240 (2008).
  • NIH consensus conference. Adjuvant therapy for patients with colon and rectal cancer. JAMA264, 1444–1450 (1990).
  • Wong RK, Tandan V, De Silva S et al. Pre-operative radiotherapy and curative surgery for the management of localized rectal carcinoma. Cochrane Database Syst. Rev.CD002102 (2007).
  • Gerard A, Buyse M, Nordlinger B et al. Preoperative radiotherapy as adjuvant treatment in rectal cancer. Final results of a randomized study of the European Organization for Research and Treatment of Cancer (EORTC). Ann. Surg.208, 606–614 (1988).
  • Goldberg PA, Nicholls RJ, Porter NH et al. Long-term results of a randomised trial of short-course low-dose adjuvant pre-operative radiotherapy for rectal cancer: reduction in local treatment failure. Eur. J. Cancer30A, 1602–1606 (1994).
  • Marks G, Mohiuddin M, Borenstein BD. Preoperative radiation therapy and sphincter preservation by the combined abdominotranssacral technique for selected rectal cancers. Dis. Colon Rectum28, 565–571 (1985).
  • Minsky BD, Cohen AM, Enker WE et al. Sphincter preservation with preoperative radiation therapy and coloanal anastomosis. Int. J. Radiat. Oncol. Biol. Phys.31, 553–559 (1995).
  • Carraro S, Roca EL, Cartelli C et al. Radiochemotherapy with short daily infusion of low-dose oxaliplatin, leucovorin, and 5-FU in T3-T4 unresectable rectal cancer: a Phase II IATTGI study. Int. J. Radiat. Oncol. Biol. Phys.54, 397–402 (2002).
  • Chau I, Brown G, Cunningham D et al. Neoadjuvant capecitabine and oxaliplatin followed by synchronous chemoradiation and total mesorectal excision in magnetic resonance imaging-defined poor-risk rectal cancer. J. Clin. Oncol.24, 668–674 (2006).
  • Chen ET, Mohiuddin M, Brodovsky H et al. Downstaging of advanced rectal cancer following combined preoperative chemotherapy and high dose radiation. Int. J. Radiat. Oncol. Biol. Phys.30, 169–175 (1994).
  • De Paoli A, Chiara S, Luppi G et al. Capecitabine in combination with preoperative radiation therapy in locally advanced, resectable, rectal cancer: a multicentric Phase II study. Ann. Oncol.17, 246–251 (2006).
  • Dunst J, Reese T, Sutter T et al. Phase I trial evaluating the concurrent combination of radiotherapy and capecitabine in rectal cancer. J. Clin. Oncol.20, 3983–3991 (2002).
  • Grann A, Minsky BD, Cohen AM et al. Preliminary results of preoperative 5-fluorouracil, low-dose leucovorin, and concurrent radiation therapy for clinically resectable T3 rectal cancer. Dis. Colon Rectum40, 515–522 (1997).
  • Kim JS, Kim JS, Cho MJ et al. Preoperative chemoradiation using oral capecitabine in locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys.54, 403–408 (2002).
  • Krishnan S, Janjan NA, Skibber J. M et al. Phase II study of capecitabine (Xeloda) and concomitant boost radiotherapy in patients with locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys.66, 762–771 (2006).
  • Machiels JP, Sempoux C, Scalliet P et al. Phase I/II study of preoperative cetuximab, capecitabine, and external beam radiotherapy in patients with rectal cancer. Ann. Oncol.18, 738–744 (2007).
  • Mehta VK, Cho C, Ford JM et al. Phase II trial of preoperative 3D conformal radiotherapy, protracted venous infusion 5-fluorouracil, and weekly CPT-11, followed by surgery for ultrasound-staged T3 rectal cancer. Int. J. Radiat. Oncol. Biol. Phys.55, 132–137 (2003).
  • Mohiuddin M, Winter K, Mitchell E et al. Randomized Phase II study of neoadjuvant combined-modality chemoradiation for distal rectal cancer: Radiation Therapy Oncology Group Trial 0012. J. Clin. Oncol.24, 650–655 (2006).
  • Moore HG, Riedel E, Minsky BD et al. Adequacy of 1-cm distal margin after restorative rectal cancer resection with sharp mesorectal excision and preoperative combined-modality therapy. Ann. Surg. Oncol.10, 80–85 (2003).
  • Navarro M, Dotor E, Rivera F et al. A Phase II study of preoperative radiotherapy and concomitant weekly irinotecan in combination with protracted venous infusion 5-fluorouracil, for resectable locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys.66, 201–205 (2006).
  • Onaitis MW, Noone RB, Fields R et al. Complete response to neoadjuvant chemoradiation for rectal cancer does not influence survival. Ann. Surg. Oncol.8, 801–806 (2001).
  • Rich TA, Skibber JM, Ajani JA et al. Preoperative infusional chemoradiation therapy for stage T3 rectal cancer. Int. J. Radiat. Oncol. Biol. Phys.32(4), 1025–1029 (1995).
  • Rodel C, Grabenbauer GG, Papadopoulos T et al. Phase I/II trial of capecitabine, oxaliplatin, and radiation for rectal cancer. J. Clin. Oncol.21(16), 3098–3104 (2003).
  • Rodel C, Liersch T, Hermann R. M et al. Multicenter Phase II trial of chemoradiation with oxaliplatin for rectal cancer. J. Clin. Oncol.25, 110–117 (2007).
  • Ryan DP, Niedzwiecki D, Hollis D et al. Phase I/II study of preoperative oxaliplatin, fluorouracil, and external-beam radiation therapy in patients with locally advanced rectal cancer: Cancer and Leukemia Group B 89901. J. Clin. Oncol.24, 2557–2562 (2006).
  • Voelter V, Zouhair A, Vuilleumier H et al. CPT-11 and concomitant hyperfractionated accelerated radiotherapy induce efficient local control in rectal cancer patients: results from a Phase II. Br. J. Cancer95(6), 710–716 (2006).
  • Willeke F, Horisberger K, Kraus-Tiefenbacher U et al. A Phase II study of capecitabine and irinotecan in combination with concurrent pelvic radiotherapy (CapIri-RT) as neoadjuvant treatment of locally advanced rectal cancer. Br. J. Cancer96, 912–917 (2007).
  • Willett CG, Hagan M, Daley W et al. Changes in tumor proliferation of rectal cancer induced by preoperative 5-fluorouracil and irradiation. Dis. Colon Rectum41, 62–67 (1998).
  • Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe. Cell Death. Differ.15, 1153–1162 (2008).
  • Willett CG, Warland G, Hagan MP et al. Tumor proliferation in rectal cancer following preoperative irradiation. J. Clin. Oncol.13, 1417–1424 (1995).
  • Willett CG, Warland G, Cheek R et al. Proliferating cell nuclear antigen and mitotic activity in rectal cancer: predictor of response to preoperative irradiation. J. Clin. Oncol.12, 679–682 (1994).
  • Willett CG, Warland G, Coen J et al. Rectal cancer: the influence of tumor proliferation on response to preoperative irradiation. Int. J. Radiat. Oncol. Biol. Phys.32, 57–61 (1995).
  • Rodel C, Grabenbauer GG, Papadopoulos T et al. Apoptosis as a cellular predictor for histopathologic response to neoadjuvant radiochemotherapy in patients with rectal cancer. Int. J. Radiat. Oncol. Biol. Phys.52, 294–303 (2002).
  • Desai GR, Myerson RJ, Higashikubo R et al. Carcinoma of the rectum. Possible cellular predictors of metastatic potential and response to radiation therapy. Dis. Colon Rectum39, 1090–1096 (1996).
  • Qiu H, Sirivongs P, Rothenberger M et al. Molecular prognostic factors in rectal cancer treated by radiation and surgery. Dis. Colon Rectum43, 451–459 (2000).
  • Tannapfel A, Nusslein S, Fietkau R et al. Apoptosis, proliferation, bax, bcl-2 and p53 status prior to and after preoperative radiochemotherapy for locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys.41, 585–591 (1998).
  • Lowe SW, Schmitt EM, Smith SW et al. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature362, 847–849 (1993).
  • Bracey TS, Miller JC, Preece A et al. g-radiation-induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild type p53. Oncogene10, 2391–2396 (1995).
  • Merritt AJ, Potten CS, Kemp CJ et al. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res.54, 614–617 (1994).
  • Spitz FR, Nguyen D, Skibber J. M et al. Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin. Cancer Res.2, 1665–1671 (1996).
  • Hendry JH, Cai WB, Roberts SA et al. p53 deficiency sensitizes clonogenic cells to irradiation in the large but not the small intestine. Radiat. Res.148, 254–259 (1997).
  • Slichenmyer WJ, Nelson WG, Slebos RJ et al. Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res.53, 4164–4168 (1993).
  • Ribeiro JC, Barnetson AR, Fisher RJ et al. Relationship between radiation response and p53 status in human bladder cancer cells. Int. J .Radiat. Biol.72, 11–20 (1997).
  • Adell G, Sun XF, Stal O et al. p53 status: an indicator for the effect of preoperative radiotherapy of rectal cancer. Radiother. Oncol.51, 169–174 (1999).
  • Hamada M, Fujiwara T, Hizuta A et al. The p53 gene is a potent determinant of chemosensitivity and radiosensitivity in gastric and colorectal cancers. J. Cancer Res. Clin. Oncol.122, 360–365 (1996).
  • Nehls O, Klump B, Holzmann K et al. Influence of p53 status on prognosis in preoperatively irradiated rectal carcinoma. Cancer85, 2541–2548 (1999).
  • Elsaleh H, Robbins P, Joseph D et al. Can p53 alterations be used to predict tumour response to pre-operative chemo-radiotherapy in locally advanced rectal cancer? Radiother. Oncol.56, 239–244 (2000).
  • Lane DP, Benchimol S. p53: oncogene or anti-oncogene? Genes Dev.4, 1–8 (1990).
  • Baas IO, van den Berg FM, Mulder JW et al. Potential false-positive results with antigen enhancement for immunohistochemistry of the p53 gene product in colorectal neoplasms. J. Pathol.178, 264–267 (1996).
  • Finlay CA, Hinds PW, Tan TH et al. Activating mutations for transformation by p53 produce a gene product that forms an hsc70–p53 complex with an altered half-life. Mol. Cell Biol.8, 531–539 (1988).
  • Kandioler D, Zwrtek R, Ludwig C et al.TP53 genotype but not p53 immunohistochemical result predicts response to preoperative short-term radiotherapy in rectal cancer. Ann. Surg.235, 493–498 (2002).
  • Scott N, Hale A, Deakin M et al. A histopathological assessment of the response of rectal adenocarcinoma to combination chemo-radiotherapy: relationship to apoptotic activity, p53 and bcl-2 expression. Eur. J. Surg. Oncol.24, 169–173 (1998).
  • Vidaurreta M, Maestro ML, Sanz-Casla MT et al. Colorectal carcinoma prognosis can be predicted by alterations in gene p53 exons 5 and 8. Int. J. Colorectal Dis.23, 581–586 (2008).
  • Namba H, Hara T, Tukazaki T et al. Radiation-induced G1 arrest is selectively mediated by the p53-WAF1/Cip1 pathway in human thyroid cells. Cancer Res.55, 2075–2080 (1995).
  • el-Deiry WS, Tokino T, Velculescu VE et al. WAF1, a potential mediator of p53 tumor suppression. Cell75, 817–825 (1993).
  • Waldman T, Lengauer C, Kinzler KW et al. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature381, 713–716 (1996).
  • Brugarolas J, Chandrasekaran C, Gordon JI et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature377, 552–557 (1995).
  • Fu CG, Tominaga O, Nagawa H et al. Role of p53 and p21/WAF1 detection in patient selection for preoperative radiotherapy in rectal cancer patients. Dis. Colon Rectum41, 68–74 (1998).
  • Palazzo JP, Kafka NJ, Grasso L et al. The role of p53, p21WAF1/C1PI, and bcl-2 in radioresistant colorectal carcinoma. Hum. Pathol.28, 1189–1195 (1997).
  • Lin LC, Lee HH, Hwang WS et al. p53 and p27 as predictors of clinical outcome for rectal-cancer patients receiving neoadjuvant therapy. Surg. Oncol.15, 211–216 (2006).
  • Esposito G, Pucciarelli S, Alaggio R et al. P27kip1 expression is associated with tumor response to preoperative chemoradiotherapy in rectal cancer. Ann. Surg. Oncol.8, 311–318 (2001).
  • Tian H, Wittmack EK, Jorgensen TJ. p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. Cancer Res.60, 679–684 (2000).
  • Huerta S, Goulet EJ, Huerta-Yepez S et al. Screening and detection of apoptosis. J. Surg. Res.139, 143–156 (2007).
  • Huerta S.Recent advances in the molecular diagnosis and prognosis of colorectal cancer. Expert Rev. Mol. Diagn.8, 277–288 (2008).
  • Rodel C, Haas J, Groth A et al. Spontaneous and radiation-induced apoptosis in colorectal carcinoma cells with different intrinsic radiosensitivities: survivin as a radioresistance factor. Int. J. Radiat. Oncol. Biol. Phys.55, 1341–1347 (2003).
  • de Bruin EC, van de Velde CJ, van de Pas S et al. Prognostic value of apoptosis in rectal cancer patients of the dutch total mesorectal excision trial: radiotherapy is redundant in intrinsically high-apoptotic tumors. Clin. Cancer Res.12, 6432–6436 (2006).
  • Sinicrope FA, Ruan SB, Cleary KR et al.bcl2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res.55, 237–241 (1995).
  • Anguiano-Hernandez YM, Chartier A, Huerta S. Smac/DIABLO and colon cancer. Anticancer Agents Med. Chem.7, 467–473 (2007).
  • Russo SM, Tepper JE, Baldwin AS Jr et al. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-κB. Int. J. Radiat. Oncol. Biol. Phys.50, 183–193 (2001).
  • Rodel F, Hoffmann J, Grabenbauer GG et al. High survivin expression is associated with reduced apoptosis in rectal cancer and may predict disease-free survival after preoperative radiochemotherapy and surgical resection. Strahlenther. Onkol.178, 426–435 (2002).
  • Rodel F, Hoffmann J, Distel L et al. Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res.65, 4881–4887 (2005).
  • Rodel F, Frey B, Leitmann W et al. Survivin antisense oligonucleotides effectively radiosensitize colorectal cancer cells in both tissue culture and murine xenograft models. Int. J. Radiat. Oncol. Biol. Phys.71, 247–255 (2008).
  • Sarela AI, Scott N, Ramsdale J et al. Immunohistochemical detection of the anti-apoptosis protein, survivin, predicts survival after curative resection of stage II colorectal carcinomas. Ann. Surg. Oncol.8, 305–310 (2001).
  • Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat. Rev. Cancer8, 425–437 (2008).
  • Amaya H, Tanigawa N, Lu C et al. Association of vascular endothelial growth factor expression with tumor angiogenesis, survival and thymidine phosphorylase/platelet-derived endothelial cell growth factor expression in human colorectal cancer. Cancer Lett.119, 227–235 (1997).
  • Kang SM, Maeda K, Onoda N et al. Combined analysis of p53 and vascular endothelial growth factor expression in colorectal carcinoma for determination of tumor vascularity and liver metastasis. Int. J. Cancer74, 502–507 (1997).
  • Takebayashi Y, Aklyama S, Yamada K et al. Angiogenesis as an unfavorable prognostic factor in human colorectal carcinoma. Cancer78, 226–231 (1996).
  • Tanigawa N, Amaya H, Matsumura M et al. Tumor angiogenesis and mode of metastasis in patients with colorectal cancer. Cancer Res.57, 1043–1046 (1997).
  • Citrin D, Menard C, Camphausen K.Combining radiotherapy and angiogenesis inhibitors: clinical trial design. Int. J. Radiat. Oncol. Biol. Phys.64, 15–25 (2006).
  • Presta LG, Chen H, O’Connor SJ et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res.57, 4593–4599 (1997).
  • Ferrara N.Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin. Oncol.29, 10–14 (2002).
  • Simpson D, Dunn C, Curran M et al. Oxaliplatin: a review of its use in combination therapy for advanced metastatic colorectal cancer. Drugs63, 2127–2156 (2003).
  • Czito BG, Bendell JC, Willett CG et al. Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in rectal cancer: Phase I trial results. Int. J. Radiat. Oncol. Biol. Phys.68, 472–478 (2007).
  • Willett CG, Boucher Y, di Tomaso E et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med.10, 145–147 (2004).
  • Willett CG, Boucher Y, Duda DG et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a Phase I trial in rectal cancer patients. J. Clin. Oncol.23, 8136–8139 (2005).
  • Khambata-Ford S, Garrett CR, Meropol NJ et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol.25, 3230–3237 (2007).
  • Lievre A, Bachet JB, Boige V et al.KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol.26, 374–379 (2008).
  • Cappuzzo F, Finocchiaro G, Rossi E et al. EGFR FISH assay predicts for response to cetuximab in chemotherapy refractory colorectal cancer patients. Ann. Oncol.19, 717–723 (2008).
  • Sartore-Bianchi A, Moroni M, Veronese S et al. Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J. Clin. Oncol.25, 3238–3245 (2007).
  • Bengala C, Bettelli S, Bertolini F et al. Epidermal growth factor receptor gene copy number K-ras mutation and pathological response to preoperative cetuximab, 5-FU and radiation therapy in locally advanced rectal cancer. Ann. Oncol. (2008).
  • Bertolini F, Bengala C, Losi L et al. Prognostic and predictive value of baseline and posttreatment molecular marker expression in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys.68, 1455–1461 (2007).
  • Jakob C, Liersch T, Meyer W et al. Predictive value of Ki67 and p53 in locally advanced rectal cancer: correlation with thymidylate synthase and histopathological tumor regression after neoadjuvant 5-FU-based chemoradiotherapy. World J. Gastroenterol.14, 1060–1066 (2008).
  • Liersch T, Langer C, Ghadimi BM et al. Lymph node status and TS gene expression are prognostic markers in stage II/III rectal cancer after neoadjuvant fluorouracil-based chemoradiotherapy. J. Clin. Oncol.24, 4062–4068 (2006).
  • Ghadimi BM, Grade M, Difilippantonio MJ et al. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J. Clin. Oncol.23, 1826–1838 (2005).
  • Stoehlmacher J, Goekkurt E, Mogck U et al. Thymidylate synthase genotypes and tumour regression in stage II/III rectal cancer patients after neoadjuvant fluorouracil-based chemoradiation. Cancer Lett.272, 221–225 (2008).
  • Ho-Pun-Cheung A, Assenat E, Thezenas S et al. Cyclin D1 gene G870A polymorphism predicts response to neoadjuvant radiotherapy and prognosis in rectal cancer. Int. J. Radiat. Oncol. Biol. Phys.68, 1094–1101 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.