599
Views
140
CrossRef citations to date
0
Altmetric
Review

Gold nanoparticles for molecular diagnostics

&
Pages 511-524 | Published online: 09 Jan 2014

References

  • Thaxton CS, Hill HD, Georganopoulou DG, Stoeva SI, Mirkin CA. A bio-bar-code assay based upon dithiothreitol-induced oligonucleotide release. Anal. Chem.77(24), 8174–8178 (2005).
  • Liu WT. Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng.102(1), 1–7 (2006).
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine2(5), 681–693 (2007).
  • Loo C, Lin A, Hirsch L et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat.3(1), 33–40 (2004).
  • Averitt RD, Sarkar D, Halas NJ. Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys. Rev. Lett.78(22), 4217–4220 (1997).
  • Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ. Nanoengineering of optical resonances. Chem. Phys. Lett.288(2–4), 243–247 (1998).
  • Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer107(3), 459–466 (2006).
  • Baptista P, Pereira E, Eaton P et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal. Bioanal. Chem.391(3), 943–950 (2008).
  • Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B107(3), 668–677 (2003).
  • Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv. Mater.16(19), 1685–1706 (2004).
  • Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nanotoday2(1), 18–29 (2007).
  • Ray PC, Fortner A, Darbha GK. Gold nanoparticle based FRET assay for the detection of DNA cleavage. J. Phys. Chem. B110(42), 20745–20748 (2006).
  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B110(14), 7238–7248 (2006).
  • Rosi NL and Mirkin CA. Nanostructures in biodiagnostics. Chem. Rev.105(4), 1547–1562 (2005).
  • Nie SM, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science275(5303), 1102–1106 (1997).
  • West JL and Halas NJ. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng.5285–5292 (2003).
  • Azzazy HM, Mansour MM, Kazmierczak SC. Nanodiagnostics: a new frontier for clinical laboratory medicine. Clin. Chem.52(7), 1238–1246 (2006).
  • Jennings T, Strouse G. Past, present, and future of gold nanoparticles. Adv. Exp. Med. Biol.62034–62047 (2007).
  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc.1201959–1964 (1998).
  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science277(5329), 1078–1081 (1997).
  • Reynolds RA, Mirkin CA, Letsinger RL. Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc.122(15), 3795–3796 (2000).
  • Jin R, Wu G, Li Z, Mirkin CA, Schatz GC. What controls the melting properties of DNA-linked gold nanoparticle assemblies?. J. Am. Chem. Soc.125(6), 1643–1654 (2003).
  • Cao Y, Jin R, Mirkin CA. DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc.123(32), 7961–7962 (2001).
  • Cao YC, Jin R, Thaxton CS, Mirkin CA. A two-color-change, nanoparticle-based method for DNA detection. Talanta67(3), 449–455 (2005).
  • Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc.125(27), 8102–8103 (2003).
  • Chakrabarti R and Klibanov AM. Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. J. Am. Chem. Soc.125(41), 12531–12540 (2003).
  • Doria G, Franco R, Baptista P. Nanodiagnostics: fast colorimetric method for single nucleotide polymorphism/mutation detection. IET Nanobiotechnol.1(4), 53–57 (2007).
  • Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl Acad. Sci. USA101(39), 14036–14039 (2004).
  • Li H, Rothberg LJ. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J. Am. Chem. Soc.126(35), 10958–10961 (2004).
  • Li H, Rothberg LJ. DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Chem.76(18), 5414–5417 (2004).
  • Li H, Rothberg L. Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. Anal. Chem.77(19), 6229–6233 (2005).
  • Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science289(5485), 1757–1760 (2000).
  • Taton TA, Lu G, Mirkin CA. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc.123(21), 5164–5165 (2001).
  • Storhoff JJ, Marla SS, Bao P et al. Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens. Bioelectron.19(8), 875–883 (2004).
  • Storhoff JJ, Marla SS, Garimella V, Mirkin CA. Labels and detection methods. In: Microarray Technology and its Applications. Muller UR, Nicolau DV (Eds). Springer, NY, USA, 147–174 (2004).
  • Huber M, Wei TF, Muller UR, Lefebvre PA, Marla SS, Bao YP. Gold nanoparticle probe-based gene expression analysis with unamplified total human RNA. Nucleic Acids Res.32(18), e137 (2004).
  • Wang J, Xu D, Kawde A, Polsky R. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem.73(22), 5576–5581 (2001).
  • Wang J, Polsky R, Xu D. Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir17(19), 5739–5741 (2001).
  • Wang J, Xu D, Polsky R. Magnetically-induced solid-state electrochemical detection of DNA hybridization. J. Am. Chem. Soc.124(16), 4208–4209 (2002).
  • Ozsoz M, Erdem A, Kerman K et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal. Chem.75(9), 2181–2187 (2003).
  • Park SJ, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science295(5559), 1503–1506 (2002).
  • Weizmann Y, Patolsky F, Willner I. Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst126(9), 1502–1504 (2001).
  • Willner I, Patolsky F, Weizmann Y, Willner B. Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction. Talanta56(5), 847–856 (2002).
  • Yeh HC, Chao SY, Ho YP, Wang TH. Single-molecule detection and probe strategies for rapid and ultrasensitive genomic detection. Curr. Pharm. Biotechnol.6(6), 453–461 (2005).
  • Didenko VV. DNA probes using fluorescence resonance energy transfer (FRET): Designs and applications. BioTechniques31(5), 1106–1116, 1118, 1120–1121 (2001).
  • Yun CS, Javier A, Jennings T et al. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J. Am. Chem. Soc.127(9), 3115–3119 (2005).
  • Jennings TL, Schlatterer JC, Singh MP, Greenbaum NL, Strouse GF. NSET molecular beacon analysis of hammerhead RNA substrate binding and catalysis. Nano Lett.6(7), 1318–1324 (2006).
  • Jennings TL, Singh MP, Strouse GF. Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity. J. Am. Chem. Soc.128(16), 5462–5467 (2006).
  • Griffin J, Singh AK, Senapati D et al. Size- and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA. Chemistry15(2), 342–351 (2009).
  • Dubertret B, Calame M, Libchaber AJ. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat. Biotechnol.19(4), 365–370 (2001).
  • Maxwell DJ, Taylor JR, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc.124(32), 9606–9612 (2002).
  • Wargnier R, Baranov AV, Maslov VG et al. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies. Nano Letters4(3), 451–457 (2004).
  • Gueroui Z and Libchaber A. Single-molecule measurements of gold-quenched quantum dots. Phys. Rev. Lett.93(16), 166108 (2004).
  • Dyadyusha L, Yin H, Jaiswal S et al. Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem. Commun. (Camb.) (25), 3201–3203 (2005).
  • Sapsford KE, Berti L, Medintz IL. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed Engl.45(28), 4562–4589 (2006).
  • Thomas KG, Kamat PV. Making gold nanoparticles glow: enhanced emission from a surface-bound fluoroprobe. J. Am. Chem. Soc.122(11), 2655–2656 (2000).
  • Dulkeith E, Ringler M, Klar TA, Feldmann J, Munoz Javier A, Parak WJ. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett.5(4), 585–589 (2005).
  • Lakowicz JR. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem.337(2), 171–194 (2005).
  • Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science297(5586), 1536–1540 (2002).
  • Qian X, Zhou X, Nie S. Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J. Am. Chem. Soc.130(45), 14934–14935 (2008).
  • Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev.37(9), 2028–2045 (2008).
  • He L, Musick MD, Nicewarner SR et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J. Am. Chem. Soc.122(38), 9071–9077 (2000).
  • Yao X, Li X, Toledo F et al. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal. Biochem.354(2), 220–228 (2006).
  • Bailey RC, Nam JM, Mirkin CA, Hupp JT. Real-time multicolor DNA detection with chemoresponsive diffraction gratings and nanoparticle probes. J. Am. Chem. Soc.125(44), 13541–13547 (2003).
  • Storhoff JJ, Lucas AD, Garimella V, Bao YP, Muller UR. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol.22(7), 883–887 (2004).
  • Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou V. Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal. Chem.75(16), 4155–4160 (2003).
  • Bao YP, Huber M, Wei TF, Marla SS, Storhoff JJ, Muller UR. SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Res.33(2), e15 (2005).
  • Baptista P, Doria G, Henriques D, Pereira E, Franco R. Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J. Biotechnol.119(2), 111–117 (2005).
  • Baptista PV, Koziol-Montewka M, Paluch-Oles J, Doria G, Franco R. Gold-nanoparticle-probe-based assay for rapid and direct detection of mycobacterium tuberculosis DNA in clinical samples. Clin. Chem.52(7), 1433–1434 (2006).
  • Li J, Chu X, Liu Y et al. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Res.33(19), e168 (2005).
  • Li J, Jiang JH, Xu XM et al. Simultaneous identification of point mutations via DNA ligase-mediated gold nanoparticle assembly. Analyst133(7), 939–945 (2008).
  • Sato Y, Sato K, Hosokawa K, Maeda M. Surface plasmon resonance imaging on a microchip for detection of DNA-modified gold nanoparticles deposited onto the surface in a non-cross-linking configuration. Anal. Biochem.355(1), 125–131 (2006).
  • Li M, Lin YC, Wu CC, Liu HS. Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Res.33(21), e184 (2005).
  • Aveyard J, Mehrabi M, Cossins A, Braven H, Wilson R. One step visual detection of PCR products with gold nanoparticles and a nucleic acid lateral flow (NALF) device. Chem. Commun. (Camb.) (41)(41), 4251–4253 (2007).
  • Deborggraeve S, Claes F, Laurent T et al. Molecular dipstick test for diagnosis of sleeping sickness. J. Clin. Microbiol.44(8), 2884–2889 (2006).
  • Nam JM, Stoeva SI, Mirkin CA. Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc.126(19), 5932–5933 (2004).
  • Stoeva SI, Lee JS, Thaxton CS, Mirkin CA. Multiplexed DNA detection with biobarcoded nanoparticle probes. Angew. Chem. Int. Ed. Engl.45(20), 3303–3306 (2006).
  • He M, Li K, Xiao J, Zhou Y. Rapid bio-barcode assay for multiplex DNA detection based on capillary DNA analyzer. J. Virol. Methods151(1), 126–131 (2008).
  • Hill HD, Vega RA, Mirkin CA. Nonenzymatic detection of bacterial genomic DNA using the bio bar code assay. Anal. Chem.79(23), 9218–9223 (2007).
  • Goluch ED, Nam JM, Georganopoulou DG et al. A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab. Chip6(10), 1293–1299 (2006).
  • Goluch ED, Stoeva SI, Lee JS, Shaikh KA, Mirkin CA, Liu C. A microfluidic detection system based upon a surface immobilized biobarcode assay. Biosens. Bioelectron. (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.