108
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent perspectives on the genetic background of neural tube defects with special regard to iniencephaly

Pages 281-293 | Published online: 09 Jan 2014

References

  • Milunksy A, Canick JA. Maternal serum screening for neural tube defects. In: Genetic Disorders and the Fetus. Milunsky A (Ed.). Johns Hopkins University Press, MD, USA and London, UK, 719–794 (2004).
  • Jones KL. Meningomyelocele, anencephaly, iniencephaly sequences. In: Smith’s Recognizable Patterns of Human Malformation. Jones KL (Ed.). WB Saunders Company, PA, USA, 608–609 (1997).
  • Botto LD, Moore CA, Khoury MJ, Erikson JD. Neural tube defects. N. Engl. J. Med.341, 1509–1519 (1999).
  • Hunter AGW. Brain and spinal cord. In: Human Malformations and Related Anomalies Vol. 2. Oxford Monographs on Medical Genetics No. 27. Stevenson RE, Hall JG, Goodman RM (Eds). University Press, NY, USA and Oxford, UK, 109–137 (1993).
  • Joó JG, Beke A, Papp C et al. Major diagnostic and pathological features of iniencephaly based on twenty-four cases. Fetal Diag. Ther.24, 1–6 (2008).
  • Szabó I, Papp Z. Craniospinal malformations. In: Klinikai Genetika. Papp Z (Ed.). Golden Book Kiadó, 515–522 (1995).
  • Morocz I, Szeifert GT, Molnár P et al. Prenatal diagnosis and pathoanatomy of iniencephaly. Clin. Genet.30, 81–86 (1986).
  • Katz VL, Aylsworth AS, Albright SG. Iniencephaly is not uniformly fatal. Prenat. Diagn.9, 595–599 (1989).
  • Tóth Z. The prenatal diagnostics of iniencephaly. Ideggyógy. Sz.35, 859–864 (1982).
  • Meizner I, Levi A, Katz M, Maor E. Iniencephaly. A case report. J. Reprod. Med.37, 885–888 (1992).
  • Romero R, Pilu G, Jeanty P. Prenatal diagnosis of congenital anomalies. Appleton & Lange, Norwalk, CT, USA (1988).
  • Dogan MM, Ekici E, Yapar EG et al. Iniencephaly: sonographic-pathologic correlation of 19 cases. J. Perinat. Med.24, 501–511 (1996).
  • Chaurasia BD, Wagh KV, Goyal J. Spinal retroflexion in craniorachischisis: its classification and limitation. Acta Anat.94, 626–632 (1976).
  • Csabay L, Szabó I, Papp C, Tóth-Pál E, Papp Z. Central nervous system anomalies. Ann. NY Acad. Sci.847, 21–45 (1998).
  • Stark AM. A report of two cases of iniencephalus. Br. J. Obstet. Gynecol.58, 462–464 (1951).
  • Papp Z. 1992. Neural tube defects. In: Atlas of Fetal Diagnosis. Papp Z (Ed.). Elsevier, Amsterdam, The Netherlands 117–137 (1992).
  • Gardner WJ. Klippel-Feil syndrome, iniencephalus, anencephalus, hindbrain hernia and mirror movements: overdistension of the neural tube. Child’s Brain5, 361–379 (1979).
  • Aleksic S, Budzilovich G, Greco MA. Iniencephaly: neuropathologic study. Clin. Neuropathol.2, 55–61 (1983).
  • Main DM, Menutti MT. Neural tube defects: issues in prenatal diagnoses and counselling Obstet. Gynecol.67, 1–16 (1980).
  • Holmes LB, Shirley MD, Driscoll G, Atkins L. Etiologic heterogeneity of neural tube defects. N. Eng. J. Med.294, 365–369 (1976).
  • Frey L, Hauser WA. Epidemiology of neural tube defects. Epilepsia44(Suppl. 3), 4–13 (2003).
  • Papp Z. The Semmelweis University experience. Fetal Diagn. Ther.17, 258–267 (2002).
  • De Marco P, Merello E, Mascelli S, Capra V. Current perspectives on the genetic causes of neural tube defects. Neurogenetics7, 201–221 (2006).
  • O’Rahilly R, Muller F. The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology65, 162–170 (2002).
  • Copp AJ, Greene NDE, Murdoch JN. The genetic basis of mammalian neurulation. Nat. Rev. Genet.4, 784–793 (2003).
  • Juriloff DM, Harris MJ, Tom C, MacDonald KB. Normal mouse strains differ in the site of initiation of closure of the cranial neural tube. Teratology44, 225–233 (1991).
  • Van Allen MI, Kalousek DK, Chernoff GF et al. Evidence for multi-site closure of the neural tube in humans. Am. J. Med. Genet.47, 723–743 (1993).
  • Nakatsu T, Uwabe C, Shiota K. Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat. Embryol. (Berl.)201, 455–466 (2000).
  • Colas JF, Schoenwolf GC. Towards a cellular and molecular understanding of neurulation. Nat. Rev. Genet.4, 784–793 (2003).
  • Gordon R. A review of the theories of vertebrate neurulation and their relationship to the mechanics of neural tube birth defects. J. Embryol. Exp. Morphol.89, 229–255 (1985).
  • Kolatsi-Joannu M, Moore R, Winyard PJ, Woolf AS. Expression of hepatocyte growth factor/scatter factor and its receptor, MET suggests roles in human embryonic organogenesis. Pediatr. Res.41, 657–665 (1997).
  • Wang Y, Selden C, Farnaud S et al. Hepatocyte growth factor (HGF/SF) is expressed in human epithelial cells during embryonic development; studies by in situ hibridisation and northern blot analysis. J. Anat.185, 543–551 (1994).
  • Piscione TD, Rosenblum ND. The molecular control of renal branching morphogenesis: current knowledge and emerging insights. Differentiation70, 227–246 (2002).
  • Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell67, 901–908 (1991).
  • Seol DW, Chen Q, Smith ML, Zarnegar R. Regulation of the c-met proto-oncogene promoter by p53. J. Biol. Chem.274, 3565–3572 (1999).
  • Boccaccio C, Ando M, Tamagnone L et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature391, 285–288 (1998).
  • Trovato M, d’Armiento M, Lavra L et al. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects. Virchows Arch.450, 203–210 (2007).
  • Amorosi S, d’Armiento M, Calcagno G et al. FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus. Clin. Genet.73, 380–384 (2008).
  • Jürgens G. Head and tail development of the Drosophyla embryo involves spalt, a novel homeotic gene. EMBO J.7, 189–196 (1988).
  • Kohlhase J, Wischermann A, Reichenbach H et al. Mutations in the SALL1 putative transcription factor gen causes Townes–Brocks syndrome. Nat. Genet.18, 81–83 (1998).
  • Powell CM, Michaelis RC. Townes–Brocks syndrome. J. Med. Genet.36, 89–93 (1999).
  • Kohlhase J, Chitayat D, Kotzot D et al. SALL 4 mutations in Okihiro syndrome, acro–renal–ocular syndrome and related disorders. Hum. Mutat.26, 176–183 (2005).
  • Böhm J, Buck A, Borozdin W et al. Sall1, Sall2 and Sall4 are required of neural tube closure in mice. Am. J. Pathol.173, 1455–1463 (2008).
  • Mackay DR, Hu M, Li B, Rheaume C, Dai X. The mouse Ovol2 gene is required for cranial tube development. Dev. Biol.291, 38–52 (2005).
  • Speman H, Mangold H. Induction of embryonic primordia by implantation of organizers from a different species 1923. Int. J. Dev. Biol.45, 13–38 (2001).
  • De Robertis EM, Larrain J, Oelgeschlager M, Wessely O. The establishment of Speman’s organizer and patterning of vertebrate embryo. Nat. Rev. Genet.1, 171–181 (2000).
  • Anderson RM, Stottmann RW, Choi M, Klingensmith J. Endogenous bone morphogenetic protein antagonists regulate mammalian neural crest generation and survival. Dev. Dyn.235, 2507–2520 (2006).
  • Larrain J, Bachiller D, Lu B, Agius E et al. BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development127, 821–830 (2000).
  • Hawley SH, Wunnenberg-Stapleton K, Hashimoto C et al. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev.9, 2923–2935 (1995).
  • Hemmati-Brivalou A, Kelly OG, Melton DA. Follistatin an antagonist of activin, expressed in the Spemann organizer and displays direct neuralizing activity. Cell77, 283–295 (1994).
  • Lamb TM, Knecht AK, Smith WC et al. Neural induction by secretide polypeptides. Science262, 713–718 (1993).
  • Bouwmester T, Kim SH, Sasai Y, Lu B, de Robertis EM. Cerberus is a head inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature382, 595–601 (1996).
  • Hansen CS, Marion CD, Steele K et al. Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development124, 483–492 (1997).
  • Baird A, Bohlen P. Fibroblast growth factors. In: Peptide Growth Factors and their Receptors. Sporn NC, Roberts AB (Eds). Springer, Berlin, Germany and NY, USA, 369–418 (1990).
  • Streit A, Berliner AJ, Papanayotou C et al. Initiation of neural induction by FGF signalling before gastrulation. Nature406, 74–78 (2000).
  • Shi W, Peyrot SM, Munro E, Levine M. FGF3 in the floor plate directs notochord convergent extension in the Ciona tadpole. Development136, 23–28 (2009).
  • Nelson WJ, Nusse R. Convergence of Wnt, β-catenin and cadherin pathways. Science303, 1483–1487 (2004).
  • Pera EM, Wessely O, Li SY, de Robertis EM. Neural and head induction by insulin-like growth factor signals. Dev. Cell1, 655–665 (2001).
  • Zhang J, Li R, He Q et al. All-trans-retinoic acid alters Smads expression in embryonic neural tissue of mice. J. Appl. Toxicol. DOI: 10.1002/jat.1404 (2008) (Epub ahead of print)
  • Keller R. Shaping the vertebrate body plan by polarized embryonic cell movement. Science298, 1950–1954 (2002).
  • Wallingford JB, Rowning BA, Vogeli KM et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature405, 81–85 (2000).
  • Ciruna B, Jenny A, Lee D et al. AF. Planar cell polarity signaling couples cell division and morphogenesis during neurulation. Nature439, 220–224 (2006).
  • Wallingford JB. Neural tube closure and neural tube defects: studies in animal models reveal known knowns and known unknowns. Am. J. Med. Genet.135C, 59–68 (2005).
  • Cabrera RM, Hill DS, Etheredge AJ, Finnell RH. Investigations into the etiology of neural tube defects. Birth Defects Res. C Embryo Today72, 330–344 (2004).
  • Klein TJ, Mlodzik M. Planar cell polarization: an emerging model point in the right direction. Annu. Rev. Cell Dev. Biol.21, 155–176 (2005).
  • Tree DR, Ma D, Axelrod JD. A three-tiered mechanism for regulation of the planar cell polarity. Semin. Cell Dev. Biol.13, 217–224 (2002).
  • Jenny A, Reynolds-Kenneally J, Das G et al. Diego and prickle regulate frizzled planar cell polarity signaling by competing for disheveled binding. Nat. Cell Biol.7, 691–697 (2005).
  • Adler PN. Planar signaling and morphogenesis in Drosophila. Dev. Cell2, 525–535 (2002).
  • Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier? J. Biol.4, 2–8 (2005).
  • Sokol SY. Analysis of Dishevelled signalling pathways during Xenopus development. Curr. Biol.6, 1456–1467 (1996).
  • Wallingford JB, Harland RM. Neural tube closure requires dishevelled-dependent convergent extension of the midline. Development129, 5815–5825 (2002).
  • Kibar Z, Vogan K, Groulx N et al. Ltap a mammalian homolog of Drosophila Strabismus/van Gogh, is altered in the mouse neural tube mutant loop-tail. Nat. Genet.28, 251–255 (2001).
  • Murdoch JN, Doudney K, Paternotte C et al. Severe neural tube defects in the loop-tail maouse result from the mutation of Lpp1, a novel gene involved in floor plate specification. Hum. Mol. Genet.10, 2593–2601 (2001).
  • Doudney K, Moore GE, Stanier P, Ybot-Gonzalez et al. Analysis of the planar cell polarity gene Vangl2 and its co-expressed paralogue Vangl1 in neural tube defects patients. Am. J. Med. Genet.136A, 90–92 (2005).
  • Goodrich LV. The plane facts of PCP in the CNS. Neuron60, 9–16 (2008).
  • Zallen JA. Planar polarity and tissue morphogenesis. Cell129, 1051–1063 (2007).
  • Kibar Z, Torban E, McDearmid JR et al. Mutations in VANGL1 associated with neural tube defects. N. Engl. J. Med.356, 1432–1437 (2007).
  • Wang J, Hamblet N, Mark S et al. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development133, 1767–1778 (2006).
  • Liu A, Wang B, Niswander LA. Mouse intraflagellar transport proteins regulate both the activator and the repressor functions of Gli transcription factors. Development132, 3103–3111 (2005).
  • Huangfu D, Anderson KV. Cilia and hedgehog responsiveness in mouse. Proc. Natl Acad. Sci. USA102, 11325–11330 (2005).
  • Chiang C, Litingtung Y, Lee E et al. Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature383, 407–413 (1996).
  • Smith UM, Consugar M, Tee LJ et al. The transmembrane protein meckelin (MKS3) is mutated in Meckel–Gruber syndrome and wpk rat. Nat. Genet.38, 191–196 (2006).
  • Loo CK, Freeman B, Wu XJ. N-CAM and keratins 7 and 20 in the ductal plate malformation of the Meckel–Gruber syndrome. Pathology38, 374–376 (2006).
  • Kyttala M, Tallila J, Salonen R et al. MKS1 encoding a component of the flagellar apparatus basal body proteome is mutated in Meckel syndrome. Nat. Genet.38, 155–157 (2006).
  • Holtfreter J, Hamburger V. Embryogenesis: progressive differentiation. In: Analysis of Development. Willier H, Weiss PA, Hamburger V (Eds). Saunders, PA, USA, 230–296 (1995).
  • Diez DC, Oliveira-Martinez I, Goriely A et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation and segmentation during body axis extension. Neuron40, 5–79 (2003).
  • Novitch BG, Wichterle H, Jessel TM, Sockanathan S. A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron40, 81–95 (2003).
  • Pierani A, Moran-Rivard L, Sunshine MJ et al. Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron29, 367–384 (2001).
  • Taylor NG. Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites – a potential role in regulating protein degradation. Plant Mol. Biol.64, 161–171 (2007).
  • Lee KJ, Jessell TM. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci.22, 261–294 (1999).
  • Pierani A, Brenner-Morton S, Chiang C, Jessell TM. A sonic hedgehog independent, retinoic activated pathway of neurogenesis in the ventral spinal cord. Cell97, 903–915 (1999).
  • Stoykova A, Gruss P. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J. Neurosci.14, 1395–1412 (1994).
  • Chalepakis G, Fritsch R, Fickenscher H et al. The molecular basis of the undulated/Pax-1 mutation. Cell66, 873–884 (1991).
  • Tassabehji M, Read AP, Newton VE et al. Mutation in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat. Genet.3, 26–30 (1993).
  • Baldwin CT, Lipsky NR, Hoth CF et al. Mutations in PAX3 gene causing Waardenburg syndrome type I. Hum. Mutat.3, 205–211 (1994).
  • Burren KA, Savery D, Massa V, Kok RM. Gene–environment interactions in the causation of neural tube defects: folate deficiency increases susceptibility conferred by loss of Pax3 function. Hum. Mol. Genet.17, 3675–3686 (2008).
  • Hol FA, Geurds MP, Chatkupt S et al. PAX genes and human neural tube defects: an amino acid substitution in PAX1 in a patient with spina bifida. J. Med. Genet.33, 655–660 (1996).
  • Nieuwkoop PD, Weijer CJ. Neural induction a two-way process. Med. Biol.56, 366–371 (1978).
  • Slack JM. Developmental biology. Growth factor lends a hand. Nature374, 217–218 (1995).
  • Sive HL, Hattori K, Weintraub H. Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell58, 171–180 (1989).
  • Durston AJ, Timmermans JP, Hage WJ et al. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature340, 140–144 (1989).
  • Altaba A, Jessell T. Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev.5, 175–187 (1991).
  • Papalopulu N, Kintner C. A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectroderm. Development122, 3409–3418 (1996).
  • Shiotsugu J, Katsuyama Y, Arima K et al. Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development131, 2653–2667 (2004).
  • Wild A, Kalff-Suske M, Vortkamp A et al. Point mutations in human GLI3 cause Greig syndrome. Hum. Mol. Genet.6, 1979–1984 (1997).
  • Radhakrishna U, Wild A, Grzeschik KH, Antonarakis SE. Mutation in GLI3 in postaxial polydactyly type A. Nat. Genet.17, 269–271 (1997).
  • Warkany J, Petering HG. Congenital malformation of the central nervous system in rats produced by maternal zinc deficiency. Teratology5, 319–334 (1972).
  • Cavdar AO, Bahceci M, Akar N et al. Zinc status in pregnancy and the occurrence of anencephaly in Turkey. J. Trace Elem Electrolytes Health Dis.2, 9–14 (1988).
  • Brenton DP, Jackson MJ, Young A. Two pregnancies in a patient with acrodermatitis enteropathica treated with zinc sulphate. Lancet2, 500–502 (1981).
  • Nagai T, Aruga J, Takada S et al. The expression of the mouse Zic1, Zic2, Zic3 gene suggest an essential role for Zic genes in body pattern formation. Dev. Biol.182, 299–313 (1997).
  • Klootwijk R, Groenen P, Schijvenaars M et al. Genetic variants in ZIC1, ZIC2 and ZIC3 are not major risk factors for neural tube defects in humans. Am. J. Med. Genet.124A, 40–47 (2004).
  • Aruga J, Minowa O, Yaginuma H et al. Mouse Zic1 is involved in cerebellar development. J. Neurosci.18, 284–293 (1998).
  • Zhu H, Lu W, Laurent C et al. Genes encoding catalytic subunits of protein kinase A and risk of spina bifida. Birth Defects Res. A Clin. Mol. Teratol.73, 591–596 (2005).
  • Biggs PJ, Warren W, Venitt S, Straton MR. Does a genotoxic carcinogene contribute to human breast cancer? The value of mutational spectra in unraveling the etiology of cancer. Mutagenesis8, 275–283 (1993).
  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppresor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res.54, 4855–4878 (1994).
  • Pangilinan F, Geiler K, Dolle J et al. Construction of a high resolution linkage disequilibrium map to evaluate common genetic variation TP53 and neural tube defect risk in an Irish population. Am. J. Med. Genet.146A, 2617–2625 (2008).
  • Rutishauser U, Jessell TM. Cell adhesion molecules in vertebrate neural development. Physiol. Rev.68, 819–885 (1988).
  • Detrick RJ, Dickey D, Kinter CR. The effects of N-cadherin misexpression on morphogenesis in Xenopus embryos. Neuron4, 493–506 (1990).
  • Warga RM, Kane DA. A role for N-cadherin in mesodermal morphogenesis during gastrulation. Dev. Biol.310, 211–225 (2007).
  • Thiery JP, Duband JL, Rutishauser U, Edelman GM. Cell adhesion molecules in early chicken embryogenesis. Proc. Natl Acad. Sci.79, 6737–6741 (1982).
  • Edelman GM. Cell adhesion molecules Science219, 450–457 (1983).
  • Deak KL, Boyles AL, Etchevesr HC et al. SNPs in the neural cell adhesion molecule 1 (NCAM1) gene may be associated with human neural tube defects. Hum. Genet.117, 133–142 (2005).
  • Hibbard ED, Smithells RW. Folic acid metabolism and human embryopathy. Lancet1, 1254–1258 (1965).
  • Smithells RW, Neven NC, Seller MJ. Further experience of vitamin supplementation for prevention of neural tube defects recurrences. Lancet1(8332), 1027–1030 (1983).
  • Mulinare J, Cordero JF, Erikson JD. Periconceptional use of multivitamins and the occurence of neural tube defects. JAMA260, 3141–3145 (1988).
  • Nijhout HF, Reed MC, Budu P, Ulrich CM. A mathematical model of the folate cycle: new insights into folate homeostasis. J. Biol. Chem.79, 55008–55016 (2004).
  • O’Leary VB, Mills JL, Parle-McDermott A et al. Screening for new MTHFR polymorphisms and NTD risk. Am. J. Med. Genet.138A, 99–106 (2005).
  • O’Leary VB, Pangilinan F, Cox C et al. Reduced folate carrier polymorphisms and neural tube defect risk. Mol. Genet. Metab.87, 364–369 (2006).
  • Brouns R, Ursem N, Lindemans J et al. Polymorphisms in genes related to folate and cobalamin metabolism and the associations with complex birth defects. Prenat. Diagn.28, 485–493 (2008).
  • Kapusta L, Haagmans ML, Steegers EA et al. Congenital heart defect and maternal derangement of homocysteine metabolism. J. Pediatr.135, 773–774 (1999).
  • Dalal A, Pradhan M, Tiwari D et al. MTHFR 677C>T and 1298A>C polymorphisms: evaluation of maternal genotypic risk and associaton with level of neural tube defects. Gynecol. Obstet. Invest.63, 146–150 (2007).
  • Frosst P, Blom HJ, Milos R et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet.10, 111–113 (1995).
  • Fodinger M, Horl WH, Sunder-Plassman G. Molecular biology of 5,10-methyelenetetrahydrofolate reductase. J. Nephrol.13, 20–33 (2000).
  • Johnson WG, Stenroos ES, Spychala JR et al. New 19 bp deletion polymorphism in intron-1 of dihidrofolate reductase (DHFR): a risk factor for spina bifida acting in mothers during pregnancy? Am. J. Med. Genet.124A, 339–345 (2004).
  • Guerin SL, Leclerc S, Verreault H et al. Overlapping cis-acting elements located in the first intron of the gene for type I 3 β-hydroxysteroid dehydrogenase modulate its transcriptional activity. Mol. Endocrin.9, 1583–1597 (1995).
  • Clark IM, Rowan AD, Edwards DR et al. Transcriptional activity of the human tissue inhibitor of metalloproteinase 1 (TIMP1) gene in fibroblasts involves elements in the promoter, exon 1 and intron 1. Biochem. J.324, 611–617 (1997).
  • Boyles AL, Billups AV, Deak KL et al. Neural tube defects and folate pathway genes: family based association tests of gene-gene and gene-environment interactions. Environ. Health Perspect.114, 1547–1552 (2006).
  • Gelineau-van Waes J, Maddox JR, Smith LM et al. Microarray analysis of E9.5 reduced folate carrier (RFC1; Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex. BMC Genomics9, 156–161 (2008).
  • Rothenberg SP, da Costa MP, Sequeira JM et al. Autoantibodies against folate receptors in women with a pregnancy complicated by neural tube defect. N. Engl. J. Med.350, 134–142 (2004).
  • Epstein DJ, Vekemans M, Gros P. Splotch (Sp2H) a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax3. Cell67, 767–774 (1991).
  • Mitrecić D, Mavrić S, Gajović S. PCR-based identification of short deletion/insertions and single nucleotide substitutions in genotyping of splotch (Pax3sp) and truncate (Nototc) mouse mutants. Mol. Cell Probes22, 110–114 (2008).
  • Wlodarczyk BJ, Tang LS, Triplett A et al. Spontaneous neural tube defects in splotch mice supplemented with selected micronutrients. Toxicol. Appl. Pharmacol.15, 55–63 (2006).
  • Kuhar SG, Feng L, Vidan S et al. Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development117, 97–104 (1993).
  • Kutzbach C, Stokstad EL. 10-formyltetrahydrofolate: NADP oxireductase. Methods Enzymol.18B, 793–798 (1971).
  • Krebs HA, Hems R, Tyler B. The regulation of folate and methionine metabolism. Biochem. J.158, 341–353 (1976).
  • Scrutton MC, Beis I. Inhibitory effects of histidine and their reversal. The roles of pyruvate carboxylase and N10-formyltetrahydrofolate dehydrogenase. Biochem. J.177, 833–846 (1979).
  • Anthony TE, Heintz N. The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS suggesting a role in human neural tube defects. J. Comp. Neurol.500, 368–383 (2007).
  • Detrait ER, George TM, Etchevers HC et al. Human neural tube defects: developmental biology, epidemiology, and genetics. Neurotoxicol. Teratol.27, 515–524 (2005).
  • Nakatsu T, Uwabe C, Shiota K. Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat. Embryol. (Berl.)201, 455–466 (2000).
  • Jones C, Chen P. Planar cell polarity signaling in vertebrates. BioEssays29, 120–132 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.