128
Views
30
CrossRef citations to date
0
Altmetric
Review

Epigenetic biomarkers in urothelial bladder cancer

&
Pages 259-269 | Published online: 09 Jan 2014

Reference

  • Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics, 2001. CA Cancer J. Clin.51(1), 15–36 (2001).
  • Messing EM. Urothelial tumors of the bladder. In: Campbell-Walsh Urology (Volume 3). Wein AJ (Ed.). Saunders Publishers, PA, USA, 2407–2446 (2006).
  • Czerniak B, Herz F, Wersto RP, Koss LG. Asymmetric distribution of oncogene products at mitosis. Proc. Natl Acad. Sci. USA89(11), 4860–4863 (1992).
  • Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N. Engl. J. Med.329(18), 1318–1327 (1993).
  • Al-Sukhun S, Hussain M. Molecular biology of transitional cell carcinoma. Crit. Rev. Oncol. Hematol.47(2), 181–193 (2003).
  • Orntoft TF, Wolf H. Molecular alterations in bladder cancer. Urol. Res.26(4), 223–233 (1998).
  • Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3(6), 415–428 (2002).
  • Jones PA, Laird PW. Cancer epigenetics comes of age. Nat. Genet.21(2), 163–167 (1999).
  • Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med.349(21), 2042–2054 (2003).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Knudson AG. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer1(2), 157–162 (2001).
  • Homma N, Tamura G, Honda T et al. Spreading of methylation within RUNX3 CpG island in gastric cancer. Cancer Sci.97(1), 51–56 (2006).
  • Tozawa T, Tamura G, Honda T et al. Promoter hypermethylation of DAP-kinase is associated with poor survival in primary biliary tract carcinoma patients. Cancer Sci.95(9), 736–740 (2004).
  • Kim WJ, Bae SC. Molecular biomarkers in urothelial bladder cancer. Cancer Sci.99(4), 646–652 (2008).
  • Uematsu F, Takahashi M, Yoshida M, Igarashi M, Nakae D. Methylation of neutral endopeptidase 24.11 promoter in rat hepatocellular carcinoma. Cancer Sci.97(7), 611–617 (2006).
  • Saito Y, Liang G, Egger G et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell9(6), 435–443 (2006).
  • Lujambio A, Ropero S, Ballestar E et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res.67(4), 1424–1429 (2007).
  • Kim WJ, Kim EJ, Jeong P et al. RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res.65(20), 9347–9354 (2005).
  • Maruyama R, Toyooka S, Toyooka KO et al. Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res.61(24), 8659–8663 (2001).
  • Muto S, Horie S, Takahashi S, Tomita K, Kitamura T. Genetic and epigenetic alterations in normal bladder epithelium in patients with metachronous bladder cancer. Cancer Res.60(15), 4021–4025 (2000).
  • Kim EJ, Kim YJ, Jeong P, Ha YS, Bae SC, Kim WJ. Methylation of the RUNX3 promoter as a potential prognostic marker for bladder tumor. J. Urol.180(3), 1141–1145 (2008).
  • Chan MW, Chan LW, Tang NL et al. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin. Cancer Res.8(2), 464–470 (2002).
  • Friedrich MG, Weisenberger DJ, Cheng JC et al. Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. Clin. Cancer Res.10(22), 7457–7465 (2004).
  • Hoque MO, Begum S, Topaloglu O et al. Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J. Natl Cancer Inst.98(14), 996–1004 (2006).
  • Yates DR, Rehman I, Meuth M, Cross SS, Hamdy FC, Catto JW. Methylational urinalysis: a prospective study of bladder cancer patients and age stratified benign controls. Oncogene25(13), 1984–1988 (2006).
  • Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301(5895), 89–92 (1983).
  • Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res.48(5), 1159–1161 (1988).
  • Rideout WM 3rd, Coetzee GA, Olumi AF, Jones PA. 5-methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science249(4974), 1288–1290 (1990).
  • Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature429(6990), 457–463 (2004).
  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res.54(18), 4855–4878 (1994).
  • Pfeifer GP, Tang M, Denissenko MF. Mutation hotspots and DNA methylation. Curr. Top. Microbiol. Immunol.249, 1–19 (2000).
  • Esteller M, Fraga MF, Guo M et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum. Mol. Genet.10(26), 3001–3007 (2001).
  • Grady WM, Willis J, Guilford PJ et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat. Genet.26(1), 16–17 (2000).
  • Burbee DG, Forgacs E, Zochbauer-Muller S et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J. Natl Cancer Inst.93(9), 691–699 (2001).
  • Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat. Genet.25(3), 315–319 (2000).
  • Suzuki H, Gabrielson E, Chen W et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat. Genet.31(2), 141–149 (2002).
  • Yamashita K, Upadhyay S, Osada M et al. Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell2(6), 485–495 (2002).
  • Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells. Nat. Rev. Cancer5(3), 223–231 (2005).
  • Sarkis AS, Bajorin DF, Reuter VE et al. Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J. Clin. Oncol.13(6), 1384–1390 (1995).
  • Schmitz-Drager BJ, Goebell PJ, Ebert T, Fradet Y. p53 immunohistochemistry as a prognostic marker in bladder cancer. Playground for urology scientists? Eur. Urol.38(6), 691–699; discussion 700 (2000).
  • Sengelov L, Horn T, Steven K. p53 nuclear immunoreactivity as a predictor of response and outcome following chemotherapy for metastatic bladder cancer. J. Cancer Res. Clin. Oncol.123(10), 565–570 (1997).
  • Catto JW, Azzouzi AR, Rehman I et al. Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J. Clin. Oncol.23(13), 2903–2910 (2005).
  • Dulaimi E, Uzzo RG, Greenberg RE, Al-Saleem T, Cairns P. Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin. Cancer Res.10(6), 1887–1893 (2004).
  • Ahrendt SA, Chow JT, Xu LH et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J. Natl Cancer Inst.91(4), 332–339 (1999).
  • Christoph F, Weikert S, Kempkensteffen C et al. Regularly methylated novel pro-apoptotic genes associated with recurrence in transitional cell carcinoma of the bladder. Int. J. Cancer119(6), 1396–1402 (2006).
  • Dominguez G, Carballido J, Silva J et al. p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin. Cancer Res.8(4), 980–985 (2002).
  • Friedrich MG, Chandrasoma S, Siegmund KD et al. Prognostic relevance of methylation markers in patients with non-muscle invasive bladder carcinoma. Eur. J. Cancer,41(17), 2769–2778 (2005).
  • Valenzuela MT, Galisteo R, Zuluaga A et al. Assessing the use of p16(INK4a) promoter gene methylation in serum for detection of bladder cancer. Eur. Urol.42(6), 622–628; discussion 628–630 (2002).
  • Bibikova M, Lin Z, Zhou L et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res.16(3), 383–393 (2006).
  • Laird PW. The power and the promise of DNA methylation markers. Nat. Rev. Cancer3(4), 253–266 (2003).
  • Belinsky SA, Nikula KJ, Palmisano WA et al. Aberrant methylation of p16 (INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl Acad. Sci. USA95(20), 11891–11896 (1998).
  • Goessl C, Krause H, Muller M et al. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res.60(21), 5941–5945 (2000).
  • Sanchez-Cespedes M, Esteller M, Wu L et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res.60(4), 892–895 (2000).
  • Habuchi T, Takahashi T, Kakinuma H et al. Hypermethylation at 9q32–33 tumour suppressor region is age-related in normal urothelium and an early and frequent alteration in bladder cancer. Oncogene20(4), 531–537 (2001).
  • Tada Y, Wada M, Taguchi K et al. The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers. Cancer Res.62(14), 4048–4053 (2002).
  • Yates DR, Rehman I, Abbod MF et al. Promoter hypermethylation identifies progression risk in bladder cancer. Clin. Cancer Res.13(7), 2046–2053 (2007).
  • Aleman A, Adrien L, Lopez-Serra L et al. Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays. Br. J. Cancer98(2), 466–473 (2008).
  • Bornman DM, Mathew S, Alsruhe J, Herman JG, Gabrielson E. Methylation of the E-cadherin gene in bladder neoplasia and in normal urothelial epithelium from elderly individuals. Am. J. Pathol.159(3), 831–835 (2001).
  • Chan MW, Chan LW, Tang NL et al. Frequent hypermethylation of promoter region of RASSF1A in tumor tissues and voided urine of urinary bladder cancer patients. Int. J. Cancer104(5), 611–616 (2003).
  • Chang LL, Yeh WT, Yang SY, Wu WJ, Huang CH. Genetic alterations of p16INK4a and p14ARF genes in human bladder cancer. J. Urol.170(2 Pt 1), 595–600 (2003).
  • Horikawa Y, Sugano K, Shigyo M et al. Hypermethylation of an E-cadherin (CDH1) promoter region in high grade transitional cell carcinoma of the bladder comprising carcinoma in situ. J. Urol.169(4), 1541–1545 (2003).
  • Lee MG, Kim HY, Byun DS et al. Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res.61(18), 6688–6692 (2001).
  • Ribeiro-Filho LA, Franks J, Sasaki M et al. CpG hypermethylation of promoter region and inactivation of E-cadherin gene in human bladder cancer. Mol. Carcinog.34(4), 187–198 (2002).
  • Sathyanarayana UG, Maruyama R, Padar A et al. Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes. Cancer Res.64(4), 1425–1430 (2004).
  • Urakami S, Shiina H, Enokida H et al. Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection. Clin. Cancer Res.12(7 Pt 1), 2109–2116 (2006).
  • Issa JP. The epigenetics of colorectal cancer. Ann. NY Acad. Sci.910, 140–153; discussion 153–145 (2000).
  • Issa JP. Epigenetic variation and human disease. J. Nutr.132(8 Suppl.), 2388S–2392S (2002).
  • So K, Tamura G, Honda T et al. Multiple tumor suppressor genes are increasingly methylated with age in non-neoplastic gastric epithelia. Cancer Sci.97(11), 1155–1158 (2006).
  • Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res.58(23), 5489–5494 (1998).
  • Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat. Genet.7(4), 536–540 (1994).
  • Shen L, Ahuja N, Shen Y et al. DNA methylation and environmental exposures in human hepatocellular carcinoma. J. Natl Cancer Inst.94(10), 755–761 (2002).
  • Brooks JD, Weinstein M, Lin X et al. CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol. Biomarkers Prev.7(6), 531–536 (1998).
  • Henrique R, Jeronimo C. Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur. Urol.46(5), 660–669; discussion 669 (2004).
  • Pu RT, Laitala LE, Clark DP. Methylation profiling of urothelial carcinoma in bladder biopsy and urine. Acta Cytol.50(5), 499–506 (2006).
  • Donat SM. Evaluation and follow-up strategies for superficial bladder cancer. Urol. Clin. North Am.30(4), 765–776 (2003).
  • Habuchi T, Marberger M, Droller MJ et al. Prognostic markers for bladder cancer: International Consensus Panel on bladder tumor markers. Urology66(6 Suppl. 1), 64–74 (2005).
  • Liou LS. Urothelial cancer biomarkers for detection and surveillance. Urology67(3 Suppl. 1), 25–33; discussion 33–24 (2006).
  • Sylvester RJ, van der Meijden AP, Oosterlinck W et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur. Urol.49(3), 466–465; discussion 475–477 (2006).
  • Costello JF, Fruhwald MC, Smiraglia DJ et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet.24(2), 132–138 (2000).
  • Esteller M. Epigenetics in cancer. N. Engl. J. Med.358(11), 1148–1159 (2008).
  • Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res.61(8), 3225–3229 (2001).
  • Wolf P, Hu YC, Doffek K, Sidransky D, Ahrendt SA. O(6)-Methylguanine-DNA methyltransferase promoter hypermethylation shifts the p53 mutational spectrum in non-small cell lung cancer. Cancer Res.61(22), 8113–8117 (2001).
  • Lee WH, Morton RA, Epstein JI et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA91(24), 11733–11737 (1994).
  • Chen W, Cooper TK, Zahnow CA et al. Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell6(4), 387–398 (2004).
  • Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell123(3), 437–448 (2005).
  • Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet.8(4), 286–298 (2007).
  • Ellinger J, El Kassem N, Heukamp LC et al. Hypermethylation of cell-free serum DNA indicates worse outcome in patients with bladder cancer. J. Urol.179(1), 346–352 (2008).
  • Kawamoto K, Enokida H, Gotanda T et al. p16INK4a and p14ARF methylation as a potential biomarker for human bladder cancer. Biochem. Biophys. Res. Commun.339(3), 790–796 (2006).
  • Marsit CJ, Karagas MR, Andrew A et al. Epigenetic inactivation of SFRP genes and TP53 alteration act jointly as markers of invasive bladder cancer. Cancer Res.65(16), 7081–7085 (2005).
  • Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res.72, 141–196 (1998).
  • Laird PW, Jackson-Grusby L, Fazeli A et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell81(2), 197–205 (1995).
  • Lubbert M. DNA methylation inhibitors in the treatment of leukemias, myelodysplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. Curr. Top. Microbiol. Immunol.249, 135–164 (2000).
  • Silverman LR, Demakos EP, Peterson BL et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol.20(10), 2429–2440 (2002).
  • Wijermans P, Lubbert M, Verhoef G et al. Low-dose 5-aza-2’-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter Phase II study in elderly patients. J. Clin. Oncol.18(5), 956–962 (2000).
  • Issa JP, Garcia-Manero G, Giles FJ et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2´-deoxycytidine (decitabine) in hematopoietic malignancies. Blood103(5), 1635–1640 (2004).
  • Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer1(3), 194–202 (2001).
  • Richon VM, O’Brien JP. Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin. Cancer Res.8(3), 662–664 (2002).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.