314
Views
64
CrossRef citations to date
0
Altmetric
Special Report

DNA methylation and cancer diagnosis: new methods and applications

, , , , &
Pages 651-657 | Published online: 09 Jan 2014

References

  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2008. CA Cancer J. Clin.58(2), 71–96 (2008).
  • Gal-Yam EN, Saito Y, Egger G, Jones PA. Cancer epigenetics: modifications, screening, and therapy. Annu. Rev. Med.59, 267–280 (2008).
  • Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet.8(4), 286–298 (2007).
  • Illingworth R, Kerr A, Desousa D et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol.6(1), E22 (2008).
  • Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl Acad. Sci. USA103(5), 1412–1417 (2006).
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev.16(1), 6–21 (2002).
  • Kwabi-Addo B, Chung W, Shen L et al. Age-related DNA methylation changes in normal human prostate tissues. Clin. Cancer Res.13(13), 3796–3802 (2007).
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet.10(5), 295–304 (2009).
  • McCabe MT, Lee EK, Vertino PM. A multifactorial signature of DNA sequence and polycomb binding predicts aberrant CpG island methylation. Cancer Res.69(1), 282–291 (2009).
  • Takeshima H, Yamashita S, Shimazu T, Niwa T, Ushijima T. The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands. Genome Res. DOI: 10.1101/gr.093310.109 (2009) (Epub ahead of print).
  • Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res.61(8), 3225–3229 (2001).
  • Laird PW. The power and the promise of DNA methylation markers. Nat. Rev. Cancer3(4), 253–266 (2003).
  • Keshet I, Schlesinger Y, Farkash S et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat. Genet.38(2), 149–153 (2006).
  • Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim. Biophys. Acta1775(1), 138–162 (2007).
  • Wu H, Chen Y, Liang J et al. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature438(7070), 981–987 (2005).
  • Yegnasubramanian S, Haffner MC, Zhang Y et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res.68(21), 8954–8967 (2008).
  • Bariol C, Suter C, Cheong K et al. The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am. J. Pathol.162(4), 1361–1371 (2003).
  • Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr. Res.61(5), R24–R29 (2007).
  • Datta J, Kutay H, Nasser MW et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res.68(13), 5049–5058 (2008).
  • Toyota M, Suzuki H, Sasaki Y et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res.68(11), 4123–4132 (2008).
  • Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development134(22), 3959–3965 (2007).
  • Mund C, Brueckner B, Lyko F. Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors: basic concepts and clinical applications. Epigenetics1(1), 7–13 (2006).
  • Kongkham PN, Northcott PA, Ra YS et al. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res.68(23), 9945–9953 (2008).
  • Lippman Z, Gendrel AV, Colot V, Martienssen R. Profiling DNA methylation patterns using genomic tiling microarrays. Nat. Methods2(3), 219–224 (2005).
  • Hatada I, Fukasawa M, Kimura M et al. Genome-wide profiling of promoter methylation in human. Oncogene25(21), 3059–3064 (2006).
  • Rush LJ, Plass C. Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal. Biochem.307(2), 191–201 (2002).
  • Yamagata Y, Maekawa R, Asada H et al. Aberrant DNA methylation status in human uterine leiomyoma. Mol. Hum. Reprod.15(4), 259–267 (2009).
  • Hu M, Yao J, Polyak K. Methylation-specific digital karyotyping. Nat. Protoc.1(3), 1621–1636 (2006).
  • Shen L, Kondo Y, Guo Y et al. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet.3(10), 2023–2036 (2007).
  • Khulan B, Thompson RF, Ye K et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res.16(8), 1046–1055 (2006).
  • Jacinto FV, Ballestar E, Esteller M. Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques44(1), 35–39 (2008).
  • Gebhard C, Schwarzfischer L, Pham TH et al. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res.66(12), 6118–6128 (2006).
  • Rauch TA, Pfeifer GP. The MIRA method for DNA methylation analysis. Methods Mol. Biol.507, 65–75 (2009).
  • Weber M, Davies JJ, Wittig D et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet.37(8), 853–862 (2005).
  • Wang S-C, Petronis A. DNA Methylation Microarrays : Experimental Design and Statistical Analysis. CRC Press, FL, USA (2008).
  • Beck S, Rakyan VK. The methylome: approaches for global DNA methylation profiling. Trends Genet.24(5), 231–237 (2008).
  • Fraga MF, Esteller M. DNA methylation: a profile of methods and applications. Biotechniques33(3), 632, 634, 636–649 (2002).
  • Shames DS, Minna JD, Gazdar AF. Methods for detecting DNA methylation in tumors: from bench to bedside. Cancer Lett.251(2), 187–198 (2007).
  • Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res.22(15), 2990–2997 (1994).
  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA93(18), 9821–9826 (1996).
  • Licchesi JD, Herman JG. Methylation-specific PCR. Methods Mol. Biol.507, 305–323 (2009).
  • Eads CA, Danenberg KD, Kawakami K et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res.28(8), E32 (2000).
  • Gustafson KS. Locked nucleic acids can enhance the analytical performance of quantitative methylation-specific polymerase chain reaction. J. Mol. Diagn.10(1), 33–42 (2008).
  • Zhang Y, Rohde C, Tierling S et al. DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol. Biol.507, 177–187 (2009).
  • Weisenberger DJ, Trinh BN, Campan M et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res.36(14), 4689–4698 (2008).
  • Wojdacz TK, Dobrovic A. Melting curve assays for DNA methylation analysis. Methods Mol. Biol.507, 229–240 (2009).
  • Brena RM, Plass C. Bio-COBRA: absolute quantification of DNA methylation in electrofluidics chips. Methods Mol. Biol.507, 257–269 (2009).
  • Kaminsky Z, Petronis A. Methylation SNaPshot: a method for the quantification of site-specific DNA methylation levels. Methods Mol. Biol.507, 241–255 (2009).
  • van den Boom D, Ehrich M. Mass spectrometric analysis of cytosine methylation by base-specific cleavage and primer extension methods. Methods Mol. Biol.507, 207–227 (2009).
  • Dejeux E, El abdalaoui H, Gut IG, Tost J. Identification and quantification of differentially methylated loci by the pyrosequencing technology. Methods Mol. Biol.507, 189–205 (2009).
  • Bibikova M, Lin Z, Zhou L et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res.16(3), 383–393 (2006).
  • Meissner A, Gnirke A, Bell GW et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res.33(18), 5868–5877 (2005).
  • Oakes CC, La Salle S, Trasler JM, Robaire B. Restriction digestion and real-time PCR (qAMP). Methods Mol. Biol.507, 271–280 (2009).
  • Yegnasubramanian S, Lin X, Haffner MC, DeMarzo AM, Nelson WG. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Res.34(3), E19 (2006).
  • Kholod N, Boniver J, Delvenne P. A new dimethyl sulfoxide-based method for gene promoter methylation detection. J. Mol. Diagn.9(5), 574–581 (2007).
  • Wong N, Morley R, Saffery R, Craig J. Archived Guthrie blood spots as a novel source for quantitative DNA methylation analysis. Biotechniques45(4), 423–428 (2008).
  • Cairns P. Gene methylation and early detection of genitourinary cancer: the road ahead. Nat. Rev. Cancer7(7), 531–543 (2007).
  • Lee WH, Morton RA, Epstein JI et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA91(24), 11733–11737 (1994).
  • Meiers I, Shanks JH, Bostwick DG. Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: review 2007. Pathology39(3), 299–304 (2007).
  • Ongenaert M, Van Neste L, De Meyer T et al. PubMeth: a cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res.36, D842–D846 (2008).
  • Wentzensen N, Sherman ME, Schiffman M, Wang SS. Utility of methylation markers in cervical cancer early detection: appraisal of the state-of-the-science. Gynecol. Oncol.112(2), 293–299 (2009).
  • Docherty SJ, Davis OS, Haworth CM, Plomin R, Mill J. Bisulfite-based epityping on pooled genomic DNA provides an accurate estimate of average group DNA methylation. Epigenetics Chromatin2(1), 3 (2009).
  • Berman BP, Weisenberger DJ, Laird PW. Locking in on the human methylome. Nat. Biotechnol.27(4), 341–342 (2009).
  • Clarke J, Wu HC, Jayasinghe L et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol.4(4), 265–270 (2009).
  • Moving AHEAD with an international human epigenome project. Nature454(7205), 711–715 (2008).
  • Akhtar A, Cavalli G. The epigenome network of excellence. PLoS Biol.3(5), E177 (2005).
  • Clement G, Benhattar J. A methylation sensitive dot blot assay (MS-DBA) for the quantitative analysis of DNA methylation in clinical samples. J. Clin. Pathol.58(2), 155–158 (2005).
  • Kristensen LS, Mikeska T, Krypuy M, Dobrovic A. Sensitive melting analysis after real time-methylation specific PCR (SMART-MSP): high-throughput and probe-free quantitative DNA methylation detection. Nucleic Acids Res.36(7), E42 (2008).
  • Dugast-Darzacq C, Grange T. MethylQuant: a real-time PCR-based method to quantify DNA methylation at single specific cytosines. Methods Mol. Biol.507, 281–303 (2009).
  • Campan M, Weisenberger DJ, Trinh B, Laird PW. MethyLight. Methods Mol. Biol.507, 325–337 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.