98
Views
9
CrossRef citations to date
0
Altmetric
Review

Mammalian cell transcriptome in response to meningitis-causing pathogens

, &
Pages 833-842 | Published online: 09 Jan 2014

References

  • van de Beek D, de Gans J, Tunkel AR, Wijdicks EF. Community-acquired bacterial meningitis in adults. N. Engl. J. Med.354, 44–53 (2006).
  • Schuchat A, Robinson K, Wenger JD et al. Bacterial meningitis in the United States in 1995. Active Surveillance Team. N. Engl. J. Med.337, 970–976 (1997).
  • Grimwood K, Anderson VA, Bond L et al. Adverse outcomes of bacterial meningitis in school-age survivors. Pediatrics95, 646–656 (1995).
  • Grimwood K, Anderson P, Anderson V, Tan L, Nolan T. Twelve year outcomes following bacterial meningitis, further evidence for persisting effects. Arch. Dis. Child83, 111–116 (2000).
  • Bedford H, de Louvois J, Halket S et al. Meningitis in infancy in England and Wales, follow up at age 5 years. BMJ323, 533–536 (2001).
  • Merkelbach S, Sittinger H, Schweizer I, Muller M. Cognitive outcome after bacterial meningitis. Acta Neurol. Scand.102, 118–123 (2000).
  • Stuertz K, Schmidt H, Trostdorf F et al. Lower lipoteichoic and teichoic acid CSF concentrations during treatment of pneumococcal meningitis with non-bacteriolytic antibiotics than with ceftriaxone. Scand. J. Infect. Dis.31, 367–370 (1999).
  • Roos KL. Infecions of the Central Nervous System. Scheld WM (Ed.). Lippincott-Raven, PA, USA, 335–402 (1997).
  • Polfliet MM, Zwijnenburg PJ, van Furth AM et al. Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J. Immunol.167, 4644–4650 (2001).
  • Sharief MK, Ciardi M, Thompson EJ. Blood–brain barrier damage in patients with bacterial meningitis, association with tumor necrosis factor-α but not interleukin-1 β. J. Infect. Dis.166, 350–358 (1992).
  • Bjerre A, Brusletto B, Ovstebo R et al. Identification of meningococcal LPS as a major monocyte activator in IL-10 depleted shock plasmas and CSF by blocking the CD14-TLR4 receptor complex. J. Endotoxin Res.9, 155–163 (2003).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell124, 783–801 (2006).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.4, 499–511 (2004).
  • Mogensen TH, Paludan SR, Kilian M, Ostergaard L. Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J. Leukoc. Biol.80, 267–277 (2006).
  • Yoshimura A, Lien E, Ingalls RR et al. Cutting edge, recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol.163, 1–5 (1999).
  • Dessing MC, Schouten M, Draing C et al. Role played by Toll-like receptors 2 and 4 in lipoteichoic acid-induced lung inflammation and coagulation. J. Infect. Dis.197, 245–252 (2008).
  • Schroder NW, Morath S, Alexander C et al. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem.278, 15587–15594 (2003).
  • Zhu H, Cong JP, Mamtora G, Gingeras T, Shenk T. Cellular gene expression altered by human cytomegalovirus, global monitoring with oligonucleotide arrays. Proc. Natl Acad. Sci. USA95, 14470–14475 (1998).
  • Jenner RG, Young RA. Insights into host responses against pathogens from transcriptional profiling. Nat. Rev. Microbiol.3, 281–294 (2005).
  • Boldrick JC, Alizadeh AA, Diehn M et al. Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc. Natl Acad. Sci. USA99, 972–977 (2002).
  • Bryant PA, Venter D, Robins-Browne R, Curtis N. Chips with everything, DNA microarrays in infectious diseases. Lancet Infect. Dis.4, 100–111 (2004).
  • Wells DB, Tighe PJ, Wooldridge KG, Robinson K, Ala’ Aldeen DA. Differential gene expression during meningeal-meningococcal interaction, evidence for self-defense and early release of cytokines and chemokines. Infect. Immun.69, 2718–2722 (2001).
  • Binnicker MJ, Williams RD, Apicella MA. Infection of human urethral epithelium with Neisseria gonorrhoeae elicits an upregulation of host anti-apoptotic factors and protects cells from staurosporine-induced apoptosis. Cell. Microbiol.5, 549–560 (2003).
  • Schubert-Unkmeir A, Sokolova O, Panzner U, Eigenthaler M, Frosch M. Gene expression pattern in human brain endothelial cells in response to Neisseria meningitidis. Infect. Immun.75, 899–914 (2007).
  • Coimbra RS, Voisin V, de Saizieu AB et al. Gene expression in cortex and hippocampus during acute pneumococcal meningitis. BMC Biol.4, 15 (2006).
  • Plant L, Asp V, Lovkvist L, Sundqvist J, Jonsson AB. Epithelial cell responses induced upon adherence of pathogenic Neisseria. Cell. Microbiol.6, 663–670 (2004).
  • Bootsma HJ, Egmont-Petersen M, Hermans PW. Analysis of the in vitro transcriptional response of human pharyngeal epithelial cells to adherent Streptococcus pneumoniae, evidence for a distinct response to encapsulated strains. Infect. Immun.75, 5489–5499 (2007).
  • Jarvis GA. Recognition and control of neisserial infection by antibody and complement. Trends Microbiol.3, 198–201 (1995).
  • Hammerschmidt S, Birkholz C, Zahringer U et al. Contribution of genes from the capsule gene complex (cps) to lipooligosaccharide biosynthesis and serum resistance in Neisseria meningitidis. Mol. Microbiol.11, 885–896 (1994).
  • Winkelstein JA. Complement and the host’s defense against the pneumococcus. Crit. Rev. Microbiol.11, 187–208 (1984).
  • Brown EJ. Interaction of Gram-positive microorganisms with complement. Curr. Top. Microbiol. Immunol.121, 159–187 (1985).
  • Virji M, Kayhty H, Ferguson DJ et al. The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol. Microbiol.5, 1831–1841 (1991).
  • Nassif X, Beretti JL, Lowy J et al. Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc. Natl Acad. Sci. USA91, 3769–3773 (1994).
  • Linhartova I, Basler M, Ichikawa J et al. Meningococcal adhesion suppresses proapoptotic gene expression and promotes expression of genes supporting early embryonic and cytoprotective signaling of human endothelial cells. FEMS Microbiol. Lett.263, 109–118 (2006).
  • Robinson K, Taraktsoglou M, Rowe KS, Wooldridge KG, Ala’Aldeen DA. Secreted proteins from Neisseria meningitidis mediate differential human gene expression and immune activation. Cell. Microbiol.6, 927–938 (2004).
  • Bonnah RA, Muckenthaler MU, Carlson H et al. Expression of epithelial cell iron-related genes upon infection by Neisseria meningitidis. Cell. Microbiol.6, 473–484 (2004).
  • Zhang H, Su YA, Hu P et al. Signature patterns revealed by microarray analyses of mice infected with influenza virus A and Streptococcus pneumoniae. Microbes Infect.8, 2172–2185 (2006).
  • Pathan N, Hemingway CA, Alizadeh AA et al. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet363, 203–209 (2004).
  • Zhao B, Bowden RA, Stavchansky SA, Bowman PD. Human endothelial cell response to Gram-negative lipopolysaccharide assessed with cDNA microarrays. Am. J. Physiol. Cell. Physiol.281, C1587–C1595 (2001).
  • Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat. Rev. Mol. Cell Biol.3, 475–486 (2002).
  • Himanen JP, Nikolov DB. Eph receptors and ephrins. Int. J. Biochem. Cell. Biol.35, 130–134 (2003).
  • Walker L, Lynch M, Silverman S et al. The notch/jagged pathway inhibits proliferation of human hematopoietic progenitors in vitro. Stem Cells17, 162–171 (1999).
  • Clarke DC, Liu X. Decoding the quantitative nature of TGF-β/Smad signaling. Trends Cell. Biol.18, 430–442 (2008).
  • Silkstone D, Hong H, Alman BA. β-catenin in the race to fracture repair, in it to Wnt. Nat. Clin. Pract. Rheumatol.4, 413–419 (2008).
  • Mercier JC, Beaufils F, Hartmann JF, Azema D. Hemodynamic patterns of meningococcal shock in children. Crit. Care. Med.16, 27–33 (1988).
  • Klein NJ, Ison CA, Peakman M et al. The influence of capsulation and lipooligosaccharide structure on neutrophil adhesion molecule expression and endothelial injury by Neisseria meningitidis. J. Infect. Dis.173, 172–179 (1996).
  • de Kleijn ED, Hazelzet JA, Kornelisse RF, de Groot R. Pathophysiology of meningococcal sepsis in children. Eur. J. Pediatr.157, 869–880 (1998).
  • Holland PC, Thompson D, Hancock S, Hodge D. Calciphylaxis, proteases, and purpura, an alternative hypothesis for the severe shock, rash, and hypocalcemia associated with meningococcal septicemia. Crit. Care Med.30, 2757–2761 (2002).
  • Hoffmann I, Eugene E, Nassif X, Couraud PO, Bourdoulous S. Activation of ErbB2 receptor tyrosine kinase supports invasion of endothelial cells by Neisseria meningitidis. J. Cell. Biol.155, 133–143 (2001).
  • Unkmeir A, Latsch K, Dietrich G et al. Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol. Microbiol.46, 933–946 (2002).
  • Sokolova O, Heppel N, Jagerhuber R et al. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells, role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell. Microbiol.6, 1153–1166 (2004).
  • Merz AJ, So M. Interactions of pathogenic Neisseriae with epithelial cell membranes. Ann. Rev. Cell Dev. Biol.16, 423–457 (2000).
  • Rohde KH, Dyer DW. Mechanisms of iron acquisition by the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae. Front Biosci.8, D1186–D1218 (2003).
  • Jack RS, Fan X, Bernheiden M et al. Lipopolysaccharide-binding protein is required to combat a murine Gram-negative bacterial infection. Nature389, 742–745 (1997).
  • Cannon JG, Tompkins RG, Gelfand JA et al. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J. Infect. Dis.161, 79–84 (1990).
  • N ’Guessan PD, Schmeck B, Ayim A et al. Streptococcus pneumoniae R6x induced p38 MAPK and JNK-mediated caspase-dependent apoptosis in human endothelial cells. Thromb. Haemost.94, 295–303 (2005).
  • N ’Guessan PD, Hippenstiel S, Etouem MO et al. Streptococcus pneumoniae induced p38 MAPK- and NF-κB-dependent COX-2 expression in human lung epithelium. Am. J. Physiol. Lung Cell. Mol. Physiol.290, L1131–L1138 (2006).
  • Tettelin H, Saunders NJ, Heidelberg J et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science287, 1809–1815 (2000).
  • McGuinness BT, Clarke IN, Lambden PR et al. Point mutation in meningococcal por A gene associated with increased endemic disease. Lancet337, 514–517 (1991).
  • Tettelin H, Nelson KE, Paulsen IT et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science293, 498–506 (2001).
  • Dopazo J, Mendoza A, Herrero J et al. Annotated draft genomic sequence from a Streptococcus pneumoniae type 19F clinical isolate. Microb. Drug Resist.7, 99–125 (2001).
  • Rogers PD, Thornton J, Barker KS et al. Pneumolysin-dependent and -independent gene expression identified by cDNA microarray analysis of THP-1 human mononuclear cells stimulated by Streptococcus pneumoniae. Infect. Immun.71, 2087–2094 (2003).
  • Li-Korotky HS, Swarts JD, Hebda PA, Doyle WJ. Cathepsin gene expression profile in rat acute pneumococcal otitis media. Laryngoscope114, 1032–1036 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.