304
Views
68
CrossRef citations to date
0
Altmetric
Review

miRNAs: roles and clinical applications in vascular disease

, , , , , & show all
Pages 79-89 | Published online: 09 Jan 2014

References

  • Stevens T, Garcia JG, Shasby DM, Bhattacharya J, Malik AB. Mechanisms regulating endothelial cell barrier function. Am. J. Physiol. Lung Cell. Mol. Physiol.279(3), L419–L422 (2000).
  • Widlansky ME, Gokce N, Keaney JF Jr, Vita JA. The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol.42(7), 1149–1160 (2003).
  • Endemann DH, Schiffrin EL. Endothelial dysfunction. J. Am. Soc. Nephrol.15(8), 1983–1992 (2004).
  • Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev.84(3), 767–801 (2004).
  • Zhang C. MicroRNAs: role in cardiovascular biology and disease. Clin. Sci. (Lond.)114(12), 699–706 (2008).
  • Zhang C. MicroRNA-145 in vascular smooth muscle cell biology: a new therapeutic target for vascular disease. Cell Cycle8(21), 3469–3473 (2009).
  • Cheng Y, Liu X, Yang J et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ. Res.105(2), 158–166 (2009).
  • Lee Y, Kim M, Han J et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J.23(20), 4051–4060 (2004).
  • Altuvia Y, Landgraf P, Lithwick G et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res.33(8), 2697–2706 (2005).
  • Lee Y, Ahn C, Han J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425(6956), 415–419 (2003).
  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature432(7014), 231–235 (2004).
  • Gregory RI, Yan KP, Amuthan G et al. The Microprocessor complex mediates the genesis of microRNAs. Nature432(7014), 235–240 (2004).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2), 281–297 (2004).
  • Han J, Lee Y, Yeom KH et al. The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev.18(24), 3016–3027 (2004).
  • Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17(24), 3011–3016 (2003).
  • Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA10(2), 185–191 (2004).
  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science303(5654), 95–98 (2004).
  • Hutvagner G, McLachlan J, Pasquinelli AE et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293(5531), 834–838 (2001).
  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science293(5532), 1146–1150 (2001).
  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell115(7), 787–798 (2003).
  • Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev.17(4), 438–442 (2003).
  • Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet.11(9), 597–610 (2010).
  • Boominathan L. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS ONE5(5), e10615 (2010).
  • Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control Drosha-mediated microRNA maturation. Nature454(7200), 56–61 (2008).
  • Xu C, Lu Y, Pan Z et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J. Cell Sci.120(Pt 17), 3045–3052 (2007).
  • Elia L, Contu R, Quintavalle M et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation120(23), 2377–2385 (2009).
  • Parrizas M, Saltiel AR, LeRoith D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3´-kinase and mitogen-activated protein kinase pathways. J. Biol. Chem.272(1), 154–161 (1997).
  • Matsubara H, Takeuchi T, Nishikawa E et al. Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene26(41), 6099–6105 (2007).
  • Cimmino A, Calin GA, Fabbri M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA102(39), 13944–13949 (2005).
  • Miranda KC, Huynh T, Tay Y et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell126(6), 1203–1217 (2006).
  • Zernecke A, Bidzhekov K, Noels H et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal.2(100), ra81 (2009).
  • Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med.16(5), 238–246 (2010).
  • Voghel G, Thorin-Trescases N, Farhat N et al. Cellular senescence in endothelial cells from atherosclerotic patients is accelerated by oxidative stress associated with cardiovascular risk factors. Mech. Ageing Dev.128(11–12), 662–671 (2007).
  • Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am. J. Physiol. Endocrinol. Metab.299(1), E110–E116 (2010).
  • Potente M, Dimmeler S. Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle7(14), 2117–2122 (2008).
  • Potente M, Ghaeni L, Baldessari D et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev.21(20), 2644–2658 (2007).
  • Menghini R, Casagrande V, Cardellini M et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation120(15), 1524–1532 (2009).
  • Poliseno L, Tuccoli A, Mariani L et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood108(9), 3068–3071 (2006).
  • Suarez Y, Fernandez-Hernando C, Yu J et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc. Natl Acad. Sci. USA105(37), 14082–14087 (2008).
  • Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res.101(1), 59–68 (2007).
  • Chen Y, Banda M, Speyer CL et al. Regulation of the expression and activity of the antiangiogenic homeobox gene GAX/MEOX2 by ZEB2 and microRNA-221. Mol. Cell. Biol.30(15), 3902–3913 (2010).
  • Anand S, Majeti BK, Acevedo LM et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat. Med.16(8), 909–914 (2010).
  • Wang S, Aurora AB, Johnson BA et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell15(2), 261–271 (2008).
  • Fish JE, Santoro MM, Morton SU et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell15(2), 272–284 (2008).
  • Suarez Y, Sessa WC. MicroRNAs as novel regulators of angiogenesis. Circ. Res.104(4), 442–454 (2009).
  • Zhang C. MicroRNAs in vascular biology and vascular disease. J. Cardiovasc. Transl Res.3(3), 235–240 (2010).
  • van Solingen C, Seghers L, Bijkerk R et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J. Cell Mol. Med.13(8A), 1577–1585 (2009).
  • Bonauer A, Carmona G, Iwasaki M et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science324(5935), 1710–1713 (2009).
  • Minami Y, Satoh M, Maesawa C et al. Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur. J. Clin. Invest.39(5), 359–367 (2009).
  • Chen T, Huang Z, Wang L et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc. Res.83(1), 131–139 (2009).
  • Olkkonen VM, Levine TP. Oxysterol binding proteins: in more than one place at one time? Biochem. Cell Biol.82(1), 87–98 (2004).
  • Raychaudhuri S, Im YJ, Hurley JH, Prinz WA. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. J. Cell Biol.173(1), 107–119 (2006).
  • Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro.Proc. Natl Acad. Sci. USA107(30), 13450–13455 (2010).
  • Boettger T, Beetz N, Kostin S et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the miR143/145 gene cluster. J. Clin. Invest.119(9), 2634–2647 (2009).
  • Kawai-Kowase K, Owens GK. Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am. J. Physiol. Cell Physiol.292(1), C59–C69 (2007).
  • Parmacek MS. MicroRNA-modulated targeting of vascular smooth muscle cells. J. Clin. Invest.119(9), 2526–2528 (2009).
  • Cordes KR, Sheehy NT, White MP et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature460(7256), 705–710 (2009).
  • Elia L, Quintavalle M, Zhang J et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ.16(12), 1590–1598 (2009).
  • Xin M, Small EM, Sutherland LB et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev.23(18), 2166–2178 (2009).
  • Quintavalle M, Elia L, Condorelli G, Courtneidge SA. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro.J. Cell Biol.189(1), 13–22 (2010).
  • Liu X, Cheng Y, Zhang S et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ. Res.104(4), 476–487 (2009).
  • Dietschy JM, Turley SD. Control of cholesterol turnover in the mouse. J. Biol. Chem.277(6), 3801–3804 (2002).
  • Brown MS, Ye J, Goldstein JL. Medicine. HDL miR-ed down by SREBP introns. Science328(5985), 1495–1496 (2010).
  • Rayner KJ, Suarez Y, Davalos A et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science328(5985), 1570–1573 (2010).
  • Najafi-Shoushtari SH, Kristo F, Li Y et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science328(5985), 1566–1569 (2010).
  • Elmen J, Lindow M, Schutz S et al. LNA-mediated microRNA silencing in non-human primates. Nature452(7189), 896–899 (2008).
  • Esau C, Davis S, Murray SF et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab.3(2), 87–98 (2006).
  • Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature438(7068), 685–689 (2005).
  • Song H, Bu G. MicroRNA-205 inhibits tumor cell migration through down-regulating the expression of the LDL receptor-related protein 1. Biochem. Biophys. Res. Commun.388(2), 400–405 (2009).
  • Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am. J. Physiol. Regul. Integr. Comp. Physiol.284(1), R1–R12 (2003).
  • Davis ME, Grumbach IM, Fukai T, Cutchins A, Harrison DG. Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kB binding. J. Biol. Chem.279(1), 163–168 (2004).
  • Weber M, Baker MB, Moore JP, Searles CD. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem. Biophys. Res. Commun.393(4), 643–648 (2010).
  • Chan LS, Yue PY, Mak NK, Wong RN. Role of microRNA-214 in ginsenoside-Rg1-induced angiogenesis. Eur. J. Pharm. Sci.38(4), 370–377 (2009).
  • Dentelli P, Rosso A, Orso F et al. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler. Thromb. Vasc. Biol.30(8), 1562–1568 (2010).
  • Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci.101(10), 2087–2092 (2010).
  • Gilad S, Meiri E, Yogev Y et al. Serum microRNAs are promising novel biomarkers. PLoS ONE3(9), e3148 (2008).
  • Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105(30), 10513–10518 (2008).
  • Hunter MP, Ismail N, Zhang X et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE3(11), e3694 (2008).
  • D’Alessandra Y, Devanna P, Limana F et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J.31(22), 2765–2773 (2010).
  • Guo M, Mao X, Ji Q et al. miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome. Immunol. Cell Biol.88(5), 555–564 (2010).
  • Ai J, Zhang R, Li Y et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem. Biophys. Res. Commun.391(1), 73–77 (2010).
  • Cheng Y, Tan N, Yang J et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin. Sci. (Lond.)119(2), 87–95 (2010).
  • Wang GK, Zhu JQ, Zhang JT et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart J.31(6), 659–666 (2010).
  • Adachi T, Nakanishi M, Otsuka Y et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin. Chem.56(7), 1183–1185 (2010).
  • Ji X, Takahashi R, Hiura Y et al. Plasma miR-208 as a biomarker of myocardial injury. Clin. Chem.55(11), 1944–1949 (2009).
  • Fichtlscherer S, De Rosa S, Fox H et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res.107(5), 677–684 (2010).
  • Tan KS, Armugam A, Sepramaniam S et al. Expression profile of microRNAs in young stroke patients. PLoS ONE4(11), e7689 (2009).
  • Lee SD, Shroyer KR, Markham NE et al. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J. Clin. Invest.101(5), 927–934 (1998).
  • Caruso P, MacLean MR, Khanin R et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler. Thromb. Vasc. Biol.30(4), 716–723 (2010).
  • Chen Z, Nakajima T, Tanabe N et al. Susceptibility to chronic thromboembolic pulmonary hypertension may be conferred by miR-759 via its targeted interaction with polymorphic fibrinogen a gene. Hum. Genet.128(4), 443–452 (2010).
  • Mosesson MW, Siebenlist KR, Meh DA. The structure and biological features of fibrinogen and fibrin. Ann. NY Acad. Sci.936, 11–30 (2001).
  • Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. J. Cardiovasc. Transl. Res.3(3), 251–255 (2010).
  • Ji R, Cheng Y, Yue J et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ. Res.100(11), 1579–1588 (2007).
  • Vendrov AE, Madamanchi NR, Hakim ZS, Rojas M, Runge MS. Thrombin and NAD(P)H oxidase-mediated regulation of CD44 and BMP4-Id pathway in VSMC, restenosis, and atherosclerosis. Circ. Res.98(10), 1254–1263 (2006).
  • Lin Y, Liu X, Cheng Y et al. Involvement of microRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J. Biol. Chem.284(12), 7903–7913 (2009).
  • Chan MC, Hilyard AC, Wu C et al. Molecular basis for antagonism between PDGF and the TGFb family of signalling pathways by control of miR-24 expression. EMBO J.29(3), 559–573 (2010).
  • Moser M, Patterson C. Bone morphogenetic proteins and vascular differentiation: BMPing up vasculogenesis. Thromb. Haemost.94(4), 713–718 (2005).
  • Fluiter K, Mook OR, Baas F. The therapeutic potential of LNA-modified siRNAs: reduction of off-target effects by chemical modification of the siRNA sequence. Methods Mol. Biol.487, 189–203 (2009).
  • van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ. Res.103(9), 919–928 (2008).
  • Xiao J, Yang B, Lin H et al. Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4.J. Cell. Physiol.212(2), 285–292 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.