205
Views
37
CrossRef citations to date
0
Altmetric
Review

Tissular and soluble miRNAs for diagnostic and therapy improvement in digestive tract cancers

, , &
Pages 101-120 | Published online: 09 Jan 2014

References

  • Klint A, Engholm G, Storm HH et al. Trends in survival of patients diagnosed with cancer of the digestive organs in the Nordic countries 1964–2003 followed up to the end of 2006. Acta Oncol.49(5), 578–607 (2010).
  • Milosavljevic T, Kostic-Milosavljevic M, Jovanovic I, Krstic M. Gastrointestinal and liver tumours and public health in Europe. Eur. Rev. Med. Pharmacol. Sci.14(4), 259–262 (2010).
  • Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics. CA Cancer J. Clin.55(2), 74–108 (2005).
  • Ng EKO, Chong WW, Jin H et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut58(10), 1375–1381 (2009).
  • Brandt D, Volkmann X, Anstätt M et al. Serum biomarkers of cell death for monitoring therapy response of gastrointestinal carcinomas. Eur. J. Cancer46(8), 1464–1473 (2010).
  • Chong G, Cunningham D. Gastrointestinal cancer: recent developments in medical oncology. Eur. J. Surg. Oncol.31(5), 453–460 (2005).
  • Weitz J, Koch M, Debus J et al. Colorectal cancer. Lancet365(9454), 153–165 (2005).
  • Wiemer EA. The role of microRNAs in cancer: no small matter. Eur. J. Cancer43(10), 1529–1544 (2007).
  • Saito Y, Friedman JM, Chihara Y et al. Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem. Biophys. Res. Commun.379(3), 726–731 (2009).
  • Schetter AJ, Leung SY, Sohn JJ et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA299(4), 425–436 (2008).
  • Schepeler T, Reinert JT, Ostenfeld MS et al. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res.68(15), 6416–6424 (2008).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature435(7043), 834–838 (2005).
  • Waldman SA, Terzic A. MicroRNA signatures as diagnostic and therapeutic targets. Clin. Chem.54(6), 943–944 (2008).
  • Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist15(7), 673–682 (2010).
  • Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer127(1), 118–126 (2010).
  • Fabbri M. miRNAs as molecular biomarkers of cancer. Expert Rev. Mol. Diagn.10(4), 435–444 (2010).
  • Mendell JT. miRiad roles for the miR-17–92 cluster in development and disease. Cell133(2), 217–222 (2008).
  • Esquela-Kerscher A, Slack FJ. Oncomirs. microRNAs with a role in cancer. Nat. Rev. Cancer6(4), 259–269 (2006).
  • Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science318(5858), 1931–1934 (2007).
  • Liu C, Spizzo R, Calin GA, Croce CM. Expression profiling of microRNA using oligo DNA arrays. Methods44(1), 22–30 (2008).
  • Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105(30), 10513–10518 (2008).
  • Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods50(4), 298–301 (2010).
  • Chang KH, Mestdagh P, Vandesompele J, Kerin MJ, Miller N. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer. BMC Cancer10, 173 (2010).
  • Liu T, Tang H, Lang Y, Liu M, Li X. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett.273(2), 233–242 (2009).
  • Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin. Chem.55(4), 623–631 (2009).
  • Wark AW, Lee HJ, Corn RM. Multiplexed detection methods for profiling microRNA expression in biological samples. Angew. Chem. Int. Ed. Engl.47(4), 644–652 (2008).
  • Izumiya M, Okamoto K, Tsuchiya N, Nakagama H. Functional screening using a microRNA virus library and microarrays: a new high-throughput assay to identify tumor-suppressive microRNAs. Carcinogenesis31(8), 1354–1359 (2010).
  • Nelson PT, Wang W, Wilfred BR, Tang G. Technical variables in high-throughput miRNA expression profiling: much work remains to be done. Biochim. Biophys. Acta1779(11), 758–765 (2008).
  • Ahmed FE, Jeffries CD, Vos PW et al. Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics6(5), 281–295 (2009).
  • Ji Q, Hao X, Meng Y et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer8, 266 (2008).
  • Xia L, Zhang D, Du R et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer123(2), 372–379 (2008).
  • Hashimoto Y, Akiyama Y, Otsubo T, Shimada S, Yuasa Y. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis31(5), 777–784 (2010).
  • Chan S, Wu C, Li AF, Chi C, Lin W. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res.28(2A), 907–911 (2008).
  • Zhang Z, Li Z, Gao C et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab. Invest.88(12), 1358–1366 (2008).
  • Takagi T, Iio A, Nakagawa Y et al. Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology77(1), 12–21 (2009).
  • Petrocca F, Visone R, Onelli MR et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell13(3), 272–286 (2008).
  • Tsukamoto Y, Nakada C, Noguchi T et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3ζ. Cancer Res.70(6), 2339–2349 (2010).
  • Xiao B, Guo J, Miao Y et al. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin. Chim. Acta400(1–2), 97–102 (2009).
  • Bandres E, Bitarte N, Arias F et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin. Cancer Res.15(7), 2281–2290 (2009).
  • Katada T, Ishiguro H, Kuwabara Y et al. microRNA expression profile in undifferentiated gastric cancer. Int. J. Oncol.34(2), 537–542 (2009).
  • Guo J, Miao Y, Xiao B et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J. Gastroenterol. Hepatol.24(4), 652–657 (2009).
  • Tie J, Pan Y, Zhao L et al. miR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet.6(3), e1000879 (2010).
  • Belian E, Kurucz R, Treue D, Lage H. Effect of YB-1 on the regulation of micro RNA expression in drug-sensitive and drug-resistant gastric carcinoma cells. Anticancer Res.30(2), 629–633 (2010).
  • Ueda T, Volinia S, Okumura H et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol.11(2), 136–146 (2010).
  • Shinozaki A, Sakatani T, Ushiku T et al. Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res.70(11), 4719–4727 (2010).
  • Li Y, VandenBoom TG, Kong D et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res.69(16), 6704–6712 (2009).
  • Wellner U, Schubert J, Burk UC et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol.11(12), 1487–1495 (2009).
  • Ji Q, Hao X, Zhang M et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE4(8), e6816 (2009).
  • Giovannetti E, Funel N, Peters GJ et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res.70(11), 4528–4538 (2010).
  • Ryu JK, Hong S, Karikari CA et al. Aberrant microRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology10(1), 66–73 (2010).
  • du Rieu MC, Torrisani J, Selves J et al. MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin. Chem.56(4), 603–612 (2010).
  • Lee EJ, Gusev Y, Jiang J et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer120(5), 1046–1054 (2007).
  • Park J, Lee EJ, Esau C, Schmittgen TD. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas38(7), e190–e199 (2009).
  • Hanoun N, Delpu Y, Suriawinata AA et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clin. Chem.56(7), 1107–1118 (2010).
  • Li Y, Vandenboom TG, Wang Z et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res.70(4), 1486–1495 (2010).
  • Mees ST, Schleicher C, Mardin WA et al. Analyzing miRNAs in ductal adenocarcinomas of the pancreas. J. Surg. Res. DOI: 10.1016/j.jss.2009.10.005 (2009) (Epub ahead of print).
  • Weiss FU, Marques IJ, Woltering JM et al. Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology137(6), 2136.e1–2145.e1 (2009).
  • Bloomston M, Frankel WL, Petrocca F et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA297(17), 1901–1908 (2007).
  • Szafranska AE, Davison TS, John J et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene26(30), 4442–4452 (2007).
  • Olson P, Lu J, Zhang H et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev.23(18), 2152–2165 (2009).
  • Li W, Xie L, He X et al. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int. J. Cancer123(7), 1616–1622 (2008).
  • Fornari F, Gramantieri L, Ferracin M et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene27(43), 5651–5661 (2008).
  • Kutay H, Bai S, Datta J et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J. Cell. Biochem.99(3), 671–678 (2006).
  • Lin CJ, Gong H, Tseng H, Wang W, Wu J. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem. Biophys. Res. Commun.375(3), 315–320 (2008).
  • Fornari F, Gramantieri L, Giovannini C et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res.69(14), 5761–5767 (2009).
  • Bai S, Nasser MW, Wang B et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J. Biol. Chem.284(46), 32015–32027 (2009).
  • Tsai W, Hsu PW, Lai T et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology49(5), 1571–1582 (2009).
  • Ladeiro Y, Couchy G, Balabaud C et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology47(6), 1955–1963 (2008).
  • Wong QW, Ching AK, Chan AW et al. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin. Cancer Res.16(3), 867–875 (2010).
  • Meng F, Henson R, Wehbe-Janek H et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology133(2), 647–658 (2007).
  • Su H, Yang J, Xu T et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res.69(3), 1135–1142 (2009).
  • Jiang J, Gusev Y, Aderca I et al. Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin. Cancer Res.14(2), 419–427 (2008).
  • Pineau P, Volinia S, McJunkin K et al. miR-221 overexpression contributes to liver tumorigenesis. Proc. Natl Acad. Sci. USA107(1), 264–269 (2010).
  • Gramantieri L, Fornari F, Ferracin M et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin. Cancer Res.15(16), 5073–5081 (2009).
  • Murakami Y, Yasuda T, Saigo K et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene25(17), 2537–2545 (2006).
  • Xu T, Zhu Y, Wei Q et al. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis29(11), 2126–2131 (2008).
  • Borralho PM, Kren BT, Castro RE et al. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J.276(22), 6689–6700 (2009).
  • Iio A, Nakagawa Y, Hirata I, Naoe T, Akao Y. Identification of non-coding RNAs embracing microRNA-143/145 cluster. Mol. Cancer9(1), 136 (2010).
  • Gregersen LH, Jacobsen AB, Frankel LB et al. MicroRNA-145 targets YES and STAT1 in colon cancer cells. PLoS ONE5(1), e8836 (2010).
  • Piepoli A, Panza A, Gentile A et al. Identification of miRNA target transcripts by combined analysis of miRNA and mRNA expression levels in normal and neoplastic colorectal tissues. Digest. Liver Dis.42(Suppl. 2), S84–S85 (2010).
  • Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int. J. Cancer127(5), 1072–1080 (2009).
  • Hu G, Chen D, Li X et al. miR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol. Ther.10(2), 190–197 (2010).
  • Liu M, Lang N, Qiu M et al. miR-137 targets Cdc42 expression, induces cell cycle G1 arrest, and inhibits invasion in colorectal cancer cells. Int. J. Cancer DOI: 10.1002/ijc.25452 (2010) (Epub ahead of print).
  • Tsang WP, Ng EK, Ng SS et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis31(3), 350–358 (2010).
  • Wang YX, Zhang XY, Zhang BF et al. Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis. J. Dig. Dis.11(1), 50–54 (2010).
  • Wang S, Wang L, Zhu T et al. Improvement of tissue preparation for laser capture microdissection: application for cell type-specific miRNA expression profiling in colorectal tumors. BMC Genomics11, 163 (2010).
  • Lee H, Kim JG, Chae YS et al. Prognostic impact of microRNA-related gene polymorphisms on survival of patients with colorectal cancer. J. Cancer Res. Clin. Oncol.136(7), 1073–1078 (2010).
  • Earle JS, Luthra R, Romans A et al. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J. Mol. Diagn.12(4), 433–440 (2010).
  • Valeri N, Gasparini P, Fabbri M et al. Modulation of mismatch repair and genomic stability by miR-155. Proc. Natl Acad. Sci. USA107(15), 6982–6987 (2010).
  • Chen Y, Song Y, Wang Z et al. Altered expression of miR-148a and miR-152 in gastrointestinal cancers and its clinical significance. J. Gastrointest. Surg.14(7), 1170–1179 (2010).
  • Brenner B, Kundel Y, Levi Z et al. Serum microRNAs as potential biomarkers for colorectal cancer. Eur. J. Cancer Suppl.7(2), 350–350 (2009).
  • Smith CM, Watson DI, Michael MZ, Hussey DJ. MicroRNAs, development of Barrett’s esophagus, and progression to esophageal adenocarcinoma. World J. Gastroenterol.16(5), 531–537 (2010).
  • Feber A, Xi L, Luketich JD, Pennathur A et al. MicroRNA expression profiles of esophageal cancer. J. Thorac. Cardiovasc. Surg.135, 255–260 (2008).
  • Mathe EA, Nguyen GH, Bowman E et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin. Cancer Res.15, 6192–6200 (2009).
  • Guo H, Wang K, Xiong G et al. A functional variant in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. Fam. Cancer9(4), 599–603 (2010).
  • Christensen BC, Avissar-Whiting M, Ouellet LG et al. Mature microRNA sequence polymorphism in MIR196A2 is associated with risk and prognosis of head and neck cancer. Clin. Cancer Res.16(14), 3713–3720 (2010).
  • Matsushima K, Isomoto H, Kohno S, Nakao K. MicroRNAs and esophageal squamous cell carcinoma. Digestion82(3), 138–144 (2010).
  • Pistol-Tanase C, Raducan E, Dima SO et al. Assessment of soluble angiogenic markers in pancreatic cancer. Biomarkers Med.2(5), 447–455 (2008).
  • Tanase CP, Neagu M, Albulescu R, Codorean E, Dima SO. Biomarkers in the diagnosis and early detection of pancreatic cancer. Expert Opin. Med. Diagn.3(5), 533–546 (2009).
  • Chan KC, Lo YM. Circulating tumour-derived nucleic acids in cancer patients: potential applications as tumour markers. Br. J. Cancer96(5), 681–685 (2007).
  • Chen X, Ba Y, Ma L et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res.18(10), 997–1006 (2008).
  • Tsujiura M, Ichikawa D, Komatsu S et al. Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer102(7), 1174–1179 (2010).
  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature435(7043), 839–843 (2005).
  • Monzo M, Navarro A, Bandres E et al. Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res.18(8), 823–833 (2008).
  • Huang Z, Huang D, Ni S et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer127(1), 118–126 (2010).
  • Yamamoto Y, Kosaka N, Tanaka M et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers14(7), 529–538 (2009).
  • Wang J, Chen J, Chang P et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. (Phila)2(9), 807–813 (2009).
  • Link A, Balaguer F, Shen Y et al. Fecal microRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol. Biomarkers Prev.19(7), 1766–1774 (2010).
  • Ahmed FE, Jeffries CD, Vos PW et al. Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics6(5), 281–295 (2009).
  • Slaby O, Svoboda M, Michalek J, Vyzula R. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol. Cancer8, 102 (2009).
  • Zhou J, Zhou Y, Yin B et al. 5-fluorouracil and oxaliplatin modify the expression profiles of microRNAs in human colon cancer cells in vitro. Oncol. Rep.23(1), 121–128 (2010).
  • Song B, Wang Y, Xi Yet al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene28(46), 4065 (2009).
  • Wilson AJ, Byun DS, Nasser S et al. HDAC4 promotes growth of colon cancer cells via repression of p21. Mol. Biol. Cell19, 4062–4075 (2008).
  • To KK, Zhan Z, Litman T, Bates SE. Regulation of ABCG2 expression at the 3´ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol. Cell. Biol.28(17), 5147–5161 (2008).
  • Li M, Marin-Muller C, Bharadwaj U, Chow KH, Yao Q, Chen C. MicroRNAs: control and loss of control in human physiology and disease. World J. Surg.33(4), 667–684 (2009).
  • Boni V, Bandres E, Zarate R, Colucci G, Maiello E, Garcia-Foncillas J. MicroRNAs as a new potential therapeutic opportunity in gastrointestinal cancer. Oncology77(Suppl. 1), 75–89 (2010).
  • Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J. Cell. Mol. Med.13, 39–53 (2009).
  • Dews M, Homayouni A, Yu D et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet.38, 1060–1065 (2006).
  • La Rocca G, Badin M, Shi B et al. Mechanism of growth inhibition by microRNA 145: the role of the IGF-I receptor signaling pathway. J. Cell. Physiol.220, 485–491 (2009).
  • Ng EK, Tsang WP, Ng SS et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br. J. Cancer101(4), 699–706 (2009).
  • Zhu S, Wu H, Wu F, Nie D, Sheng S, MoYY. Micro-RNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res.18, 350–359 (2008).
  • Asangani IA, Rasheed SA, Nikolova DA et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene27, 2128–2136 (2008).
  • Hiyoshi Y, Kamohara H, Karashima R et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin. Cancer Res.15(6), 1915–1922 (2009).
  • DeSano JT, Xu L. MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J.11(4), 682–692 (2009).
  • Arrington AK, Dahlberg PS, Davydova J, Vickers SM, Yamamoto M. ERBB2 suppression decreases cell growth via apoptosis in gastrointestinal adenocarcinomas. Surgery146(2), 213–219 (2009).
  • Ocker M, Neureiter D, Lueders M et al. Variants of bcl-2 specific siRNA for silencing antiapoptotic bcl-2 in pancreatic cancer. Gut54(9), 1298–1308 (2005).
  • Krützfeldt J, Kuwajima S, Braich R et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res.35(9), 2885–2892 (2007).
  • Elmén J, Lindow M, Schütz S et al. LNA-mediated microRNA silencing in non-human primates. Nature452(7189), 896–899 (2008).
  • Guo X, Guo L, Ji J et al. miRNA-331–3p directly targets E2F1 and induces growth arrest in human gastric cancer. Biochem. Biophys. Res. Commun.398(1), 1–6 (2010).
  • Johnson SM, Grosshans H, Shingara J et al. RAS is regulated by the let-7 microRNA family. Cell120(5), 635–647 (2005).
  • Johnson CD, Esquela-Kerscher A, Stefani G et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res.67(16), 7713–7722 (2007).
  • Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev. Biol.302(1), 1–12 (2007).
  • Oh Y, Park TG. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev.61(10), 850–862 (2009).
  • Juliano R, Alam MR, Dixit V, Kang H. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res.36(12), 4158–4171 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.