195
Views
70
CrossRef citations to date
0
Altmetric
Review

miRNAs as molecular biomarkers of cancer

Pages 435-444 | Published online: 09 Jan 2014

References

  • Ambros V, Lee RC. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol. Biol.265, 131–158 (2004).
  • Bartel DP. microRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004).
  • He L, Hannon GJ. microRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet.5, 522–531 (2004).
  • Plasterk RH. Micro RNAs in animal development. Cell124, 877–881 (2006).
  • Pasquinelli AE, Hunter S, Bracht J. microRNAs: a developing story. Curr. Opin. Genet. Dev.15, 200–205 (2005).
  • Carleton M, Cleary MA, Linsley PS. microRNAs and cell cycle regulation. Cell Cycle6, 2127–2132 (2007).
  • Lee Y, Kim M, Han J et al. microRNA genes are transcribed by RNA polymerase II. EMBO J.23, 4051–4060 (2004).
  • Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA10, 1957–1966 (2004).
  • Cullen BR. Transcription and processing of human microRNA precursors. Mol. Cell16, 861–865 (2004).
  • Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science318, 1931–1934 (2007).
  • Calin GA, Cimmino A, Fabbri M et al. MiR-15a and miR-16–1 cluster functions in human leukemia. Proc. Natl Acad. Sci. USA105, 5166–5171 (2008).
  • Vatolin S, Navaratne K, Weil RJ. A novel method to detect functional microRNA targets. J. Mol. Biol.358, 983–996 (2006).
  • Liu CG, Calin GA, Meloon B et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. USA101, 9740–9744 (2004).
  • Lu J, Getz G, Miska EA et al. microRNA expression profiles classify human cancers. Nature435, 834–838 (2005).
  • Li J, Smyth P, Flavin R et al. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol.7, 36 (2007).
  • Volinia S, Calin GA, Liu CG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103, 2257–2261 (2006).
  • Yanaihara N, Caplen N, Bowman E et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell9, 189–198 (2006).
  • Johnson SM, Grosshans H, Shingara J et al. RAS is regulated by the let-7 microRNA family. Cell120, 635–647 (2005).
  • Kumar MS, Erkeland SJ, Pester RE et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl Acad. Sci. USA105, 3903–3908 (2008).
  • Iorio MV, Ferracin M, Liu CG et al. microRNA gene expression deregulation in human breast cancer. Cancer Res.65, 7065–7070 (2005).
  • Blenkiron C, Goldstein LD, Thorne NP et al. microRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol.8, R214 (2007).
  • Ueda T, Volinia S, Okumura H et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol.11(2), 136–146 (2010).
  • Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. microRNA expression profiling in prostate cancer. Cancer Res.67, 6130–6135 (2007).
  • Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene27, 1788–1793 (2008).
  • Schaefer A, Jung M, Mollenkopf HJ et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int. J. Cancer126, 1166–1176 (2010).
  • Cummins JM, He Y, Leary RJ et al. The colorectal microRNAome. Proc. Natl Acad. Sci. USA103, 3687–3692 (2006).
  • Nagel R, le Sage C, Diosdado B et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res.68, 5795–5802 (2008).
  • Slaby O, Svoboda M, Fabian P et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology72, 397–402 (2007).
  • Lanza G, Ferracin M, Gafa R et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer6, 54 (2007).
  • Akao Y, Nakagawa Y, Naoe T. microRNA-143 and -145 in colon cancer. DNA Cell Biol.26, 311–320 (2007).
  • Bloomston M, Frankel WL, Petrocca F et al. microRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA297, 1901–1908 (2007).
  • Szafranska AE, Davison TS, John J et al. microRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene26, 4442–4452 (2007).
  • Szafranska AE, Doleshal M, Edmunds HS et al. Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues. Clin. Chem.54, 1716–1724 (2008).
  • Murakami Y, Yasuda T, Saigo K et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene25, 2537–2545 (2006).
  • Ladeiro Y, Couchy G, Balabaud et al. microRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology47, 1955–1963 (2008).
  • Chan JA, Krichevsky AM, Kosik KS. microRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.65, 6029–6033 (2005).
  • Kefas B, Godlewski J, Comeau L et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res.68, 3566–3572 (2008).
  • Ciafre SA, Galardi S, Mangiola A et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun.334, 1351–1358 (2005).
  • Novakova J, Slaby O, Vyzula R, Michalek J. microRNA involvement in glioblastoma pathogenesis. Biochem. Biophys. Res. Commun.386, 1–5 (2009).
  • Gillies JK, Lorimer IA. Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle6, 2005–2009 (2007).
  • Shi L, Cheng Z, Zhang J et al. hsa-miR-181a and hsa-miR-181b function as tumor suppressors in human glioma cells. Brain Res.1236, 185–193 (2008).
  • Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol.5, R13 (2004).
  • Silber J, Lim DA, Petritsch C et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med.6, 14 (2008).
  • Gal H, Pandi G, Kanner AA et al. miR-451 and imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem. Biophys. Res. Commun.376, 86–90 (2008).
  • Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105, 10513–10518 (2008).
  • Taylor DD, Gercel-Taylor C. microRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol.110, 13–21 (2008).
  • Chen X, Ba Y, Ma L et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res.18, 997–1006 (2008).
  • Weiss GJ, Bemis LT, Nakajima E et al. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann. Oncol.19, 1053–1059 (2008).
  • Yu SL, Chen HY, Chang GC et al. microRNA signature predicts survival and relapse in lung cancer. Cancer Cell13, 48–57 (2008).
  • Garofalo M, Di Leva G, Romano G et al. miR-221 & 222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell16, 498–509 (2009).
  • Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. microRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res.18, 350–359 (2008).
  • Yan LX, Huang XF, Shao Q et al. microRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA14, 2348–2360 (2008).
  • Zhu S, Si ML, Wu H, Mo YY. microRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem.282, 14328–14336 (2007).
  • Huang Q, Gumireddy K, Schrier M et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol.10, 202–210 (2008).
  • Diaz LK, Zhou X, Wright ET et al. CD44 expression is associated with increased survival in node-negative invasive breast carcinoma. Clin. Cancer Res.11, 3309–3314 (2005).
  • Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature449, 682–688 (2007).
  • Hossain A, Kuo MT, Saunders GF. miR-17–5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol. Cell Biol.26, 8191–8201 (2006).
  • Anzick SL, Kononen J, Walker RL et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science277, 965–968 (1997).
  • Ghadimi BM, Schrock E, Walker RL et al. Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas. Am. J. Pathol.154, 525–536 (1999).
  • Louie MC, Zou JX, Rabinovich A, Chen HW. ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol. Cell. Biol.24, 5157–5171 (2004).
  • Yu Z, Wang C, Wang M et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J. Cell Biol.182, 509–517 (2008).
  • Tavazoie SF, Alarcon C, Oskarsson T et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature451, 147–152 (2008).
  • Zhang J, Du YY, Lin YF et al. The cell growth suppressor, miR-126, targets IRS-1. Biochem. Biophys. Res. Commun.377, 136–140 (2008).
  • Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERα) and represses ERa messenger RNA and protein expression in breast cancer cell lines. Mol. Endocrinol.21, 1132–1147 (2007).
  • Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H. miR-206 expression is down-regulated in estrogen receptor α-positive human breast cancer. Cancer Res.68, 5004–5008 (2008).
  • Spizzo R, Nicoloso MS, Lupini L et al. miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-α in human breast cancer cells. Cell Death Differ.17(2), 246–254 (2010).
  • Bandres E, Cubedo E, Agirre X et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol. Cancer5, 29 (2006).
  • Li W, Xie L, He X et al. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int. J. Cancer123, 1616–1622 (2008).
  • Fornari F, Gramantieri L, Ferracin M et al. miR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene27, 5651–5661 (2008).
  • Jiang J, Gusev Y, Aderca I et al. Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, patient survival. Clin. Cancer Res.14, 419–427 (2008).
  • Gabriely G, Wurdinger T, Kesari S et al. microRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol. Cell Biol.28, 5369–5380 (2008).
  • Conti A, Aguennouz M, La Torre D et al. miR-21 and 221 upregulation and miR-181b downregulation in human grade II–IV astrocytic tumors. J. Neurooncol.93, 325–332 (2009).
  • Zhang Y, Chao T, Li R et al. microRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J. Mol. Med.87, 43–51 (2009).
  • Calin GA, Liu CG, Sevignani C et al. microRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA101, 11755–11760 (2004).
  • Calin GA, Ferracin M, Cimmino A et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med.353, 1793–1801 (2005).
  • Scaglione BJ, Salerno E, Balan M et al. Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand Black mouse model. Br. J. Haematol.139, 645–657 (2007).
  • Marton S, Garcia MR, Robello C et al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia22, 330–338 (2008).
  • Venturini L, Battmer K, Castoldi M et al. Expression of the miR-17–92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood109, 4399–4405 (2007).
  • Bueno MJ, Perez de Castro I, Gomez de Cedron M et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell13, 496–506 (2008).
  • Agirre X, Jimenez-Velasco A, San Jose-Eneriz E et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol. Cancer Res.6, 1830–1840 (2008).
  • Zanette DL, Rivadavia F, Molfetta GA et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia, Braz. J. Med. Biol. Med.40, 1435–1440 (2007).
  • Nagel S, Venturini L, Przybylski GK et al. Activation of miR-17–92 by NK-like homeodomain proteins suppresses apoptosis via reduction of E2F1 in T-cell acute lymphoblastic leukemia. Leuk. Lymph.50, 101–108 (2009).
  • Mi S, Lu J, Sun M et al. microRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc. Natl Acad. Sci. USA104(50), 19971–19976 (2007).
  • Burnett AK. Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation?. – an adult treater’s view. Br. J. Haematol.118, 357–364 (2002).
  • Garzon R, Garofalo M, Martelli MP et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl Acad. Sci. USA105, 3945–3950 (2008).
  • Fazi F, Racanicchi S, Zardo G et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell12, 457–466 (2007).
  • Garzon R, Liu S, Fabbri M et al. microRNA -29b induces global DNA hypomethylation and tumor suppressor gene re-expression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood113(25), 6411–6418 (2009).
  • Fabbri M, Garzon R, Cimmino A et al. microRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA104, 15805–15810 (2007).
  • Garzon R, Heaphy CE, Havelange V et al. microRNA 29b functions in acute myeloid leukemia. Blood114(26), 5331–5341 (2009).
  • Eis PS, Tam W, Sun L et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl Acad. Sci. USA102, 3627–3632 (2005).
  • Tam W, Hughes SH, Hayward WS, Besmer P. Avian BIC, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J. Virol.76, 4275–4286 (2002).
  • Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer39, 167–169 (2004).
  • Lawrie CH, Soneji S, Marafioti T et al. microRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int. J. Cancer121, 1156–1161 (2007).
  • Roehle A, Hoefig KP, Repsilber D et al. microRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br. J. Haematol.142(5), 732–744 (2008).
  • Kluiver J, Poppema S, de Jong D et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol.207, 243–249 (2005).
  • Nie K, Gomez M, Landgraf P et al. microRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas. Am. J. Pathol.173, 242–252 (2008).
  • Van Vlierberghe P, De Weer A, Mestdagh P et al. Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+ B-cells reveals a distinct subset of differentially expressed miRNAs. Br. J. Haematol.147, 686–690 (2009).
  • Costinean S, Zanesi N, Pekarsky Y et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc. Natl Acad. Sci. USA103, 7024–7029 (2006).
  • Costinean S, Sandhu S, Pedersen I et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein β are targeted by miR-155 in B cells of Emicro-miR-155 transgenic mice. Blood114, 1374–1382 (2009).
  • Thai TH, Calado DP, Casola S et al. Regulation of the germinal center response by microRNA-155. Science316, 604–608 (2007).
  • Rodriguez A, Vigorito E, Clare S et al. Requirement of BIC/microRNA-155 for normal immune function. Science316, 608–611 (2007).
  • Mendell JT. miRiad roles for the miR-17–92 cluster in development and disease. Cell133, 217–222 (2008).
  • He L, Thomson JM, Hemann MT et al. A microRNA polycistron as a potential human oncogene. Nature435, 828–833 (2005).
  • Ota A, Tagawa H, Karnan S et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res.64, 3087–3095 (2004).
  • Xiao C, Srinivasan L, Calado DP et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat. Immunol.9, 405–414 (2008).
  • Landais S, Landry S, Legault P, Rassart E. Oncogenic potential of the miR-106–363 cluster and its implication in human T-cell leukemia. Cancer Res.67, 5699–5707 (2007).
  • Petrocca F, Visone R, Onelli MR et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell13, 272–286 (2008).
  • Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat. Genet29, 117–129 (2001).
  • Ventura A, Young AG, Winslow MM et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell132, 875–886 (2008).
  • Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T. Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci. (2007).
  • Navarro A, Gaya A, Martinez A et al. microRNA expression profiling in classical Hodgkin lymphoma. Blood111(5), 2825–2832 (2008).
  • Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N. Engl. J. Med.352, 804–815 (2005).
  • Cimmino A, Calin GA, Fabbri M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA102, 13944–13949 (2005).
  • Pekarsky Y, Santanam U, Cimmino A et al. Tcl1 expression in CLL is regulated by miR-29 and miR-181. Cancer Res.66, 11590–11593 (2006).
  • Stamatopoulos B, Meuleman N, Haibe-Kains B et al. microRNA-29c and microRNA-223 downregulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood113(21), 5237–5245 (2009).
  • Fourouclas N, Campbell PJ, Bench AJ et al. Size matters: the prognostic implications of large and small deletions of the derivative 9 chromosome in chronic myeloid leukemia. Haematologica91, 952–955 (2006).
  • Kreil S, Pfirrmann M, Haferlach C et al. Heterogeneous prognostic impact of derivative chromosome 9 deletions in chronic myelogenous leukemia. Blood110, 1283–1290 (2007).
  • Chaubey A, Karanti S, Rai D, Oh T, Adhvaryu SG, Aguiar RC. microRNAs and deletion of the derivative chromosome 9 in chronic myeloid leukemia. Leukemia23, 186–188 (2009).
  • Roman-Gomez J, Agirre X, Jimenez-Velasco A et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J. Clin. Oncol.27, 1316–1322 (2009).
  • Agirre X, Vilas-Zornoza A, Jimenez-Velasco A et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res.69(10), 4443–4453 (2009).
  • Garzon R, Volinia S, Liu CG et al. microRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood111(6), 3183–3189 (2008).
  • Marcucci G, Radmacher MD, Maharry K et al. microRNA expression in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med.358, 1919–1928 (2008).
  • Rosenwald A, Wright G, Leroy K et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J. Exp. Med.198, 851–862 (2003).
  • Rai D, Karanti S, Jung I, Dahia PL, Aguiar RC. Coordinated expression of microRNA-155 and predicted target genes in diffuse large B-cell lymphoma. Cancer Genet. Cytogenet.181, 8–15 (2008).
  • Navarro A, Diaz T, Martinez A et al. Regulation of JAK2 by miR-135a: prognostic impact in classic Hodgkin lymphoma. Blood114, 2945–2951 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.