105
Views
46
CrossRef citations to date
0
Altmetric
Review

Bone marrow microenvironment in myelomagenesis: its potential role in early diagnosis

, , &
Pages 465-480 | Published online: 09 Jan 2014

References

  • Anonymous. Cancer Facts and Figures. American Cancer Society, GA, USA (2008).
  • Kyle RA, Rajkumar SV. Multiple myeloma. N. Engl. J. Med.351(18), 1860–1873 (2004).
  • Saad AA, Sharma M, Higa GM. Treatment of multiple myeloma in the targeted therapy era. Ann. Pharmacother.43(2), 329–338 (2009).
  • Kyle RA, Therneau TM, Rajkumar SV et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med.346(8), 564–569 (2002).
  • Landgren O, Kyle RA, Pfeiffer RM et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood113(22), 5412–5417 (2009).
  • Weiss BM, Abadie J, Verma P, Howard RS, Kuehl WM. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood113(22), 5418–5422 (2009).
  • Stewart AK, Fonseca R. Review of molecular diagnostics in multiple myeloma. Expert Rev. Mol. Diagn.7(4), 453–459 (2007).
  • Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat. Rev. Cancer2(3), 175–187 (2002).
  • Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC. Advances in biology of multiple myeloma: clinical applications. Blood104(3), 607–618 (2004).
  • Calvi LM, Adams GB, Weibrecht KW et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature425(6960), 841–846 (2003).
  • Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity25(6), 977–988 (2006).
  • Sacchetti B, Funari A, Michienzi S et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell131(2), 324–336 (2007).
  • Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature460(7252), 259–263 (2009).
  • Wu JY, Purton LE, Rodda SJ et al. Osteoblastic regulation of B lymphopoiesis is mediated by Gs{α}-dependent signaling pathways. Proc. Natl Acad. Sci. USA105(44), 16976–16981 (2008).
  • Mariani S, Coscia M, Even J et al. Severe and long-lasting disruption of T-cell receptor diversity in human myeloma after high-dose chemotherapy and autologous peripheral blood progenitor cell infusion. Br. J. Haematol.113(4), 1051–1059 (2001).
  • Massaia M, Bianchi A, Attisano C et al. Detection of hyperreactive T cells in multiple myeloma by multivalent cross-linking of the CD3/TCR complex. Blood78(7), 1770–1780 (1991).
  • Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature441(7090), 235–238 (2006).
  • Dhodapkar KM, Barbuto S, Matthews P et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17–1 cells) enriched in the bone marrow of patients with myeloma. Blood112(7), 2878–2885 (2008).
  • Prabhala RPD, Fulciniti M, Nanjappa P et al. TH17 pathway promotes tumor cell growth and suppresses immune function in myeloma: potential for therapeutic application. HematologistII, 831 (2009).
  • Dhodapkar MV, Geller MD, Chang DH et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J. Exp. Med.197(12), 1667–1676 (2003).
  • Kukreja A, Hutchinson A, Dhodapkar K et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J. Exp. Med.203(8), 1859–1865 (2006).
  • Ratta M, Fagnoni F, Curti A et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood100(1), 230–237 (2002).
  • Brown RD, Pope B, Murray A et al. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7–1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-β1 and IL-10. Blood98(10), 2992–2998 (2001).
  • Gabrilovich DI, Chen HL, Girgis KR et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med.2(10), 1096–1103 (1996).
  • Xie J, Wang Y, Freeman ME, Barlogie B 3rd, Yi Q. β2-microglobulin as a negative regulator of the immune system: high concentrations of the protein inhibit In vitro generation of functional dendritic cells. Blood101(10), 4005–4012 (2003).
  • Kukreja A, Radfar S, Sun BH, Insogna K, Dhodapkar MV. Dominant role of CD47-thrombospondin-1 interactions in myeloma induced fusion of human dendritic cells: implications for bone disease. Blood114(16), 3413–3421 (2009).
  • Zheng Y, Cai Z, Wang S et al. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood114(17), 3625–3628 (2009).
  • Scavelli C, Nico B, Cirulli T et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene27(5), 663–674 (2008).
  • Podar K, Tai YT, Davies FE et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood98(2), 428–435 (2001).
  • de Bont ES, Guikema JE, Scherpen F et al. Mobilized human CD34+ hematopoietic stem cells enhance tumor growth in a nonobese diabetic/severe combined immunodeficient mouse model of human non-Hodgkin’s lymphoma. Cancer Res.61(20), 7654–7659 (2001).
  • Zhang H, Vakil V, Braunstein M et al. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood105(8), 3286–3294 (2005).
  • Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood105(4), 1383–1395 (2005).
  • Jakob C, Sterz J, Zavrski I et al. Angiogenesis in multiple myeloma. Eur. J. Cancer42(11), 1581–1590 (2006).
  • Ribatti D, Nico B, Vacca A. Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene25(31), 4257–4266 (2006).
  • Vande Broek I, Asosingh K, Allegaert V et al. Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia18(5), 976–982 (2004).
  • Rajkumar SV, Mesa RA, Fonseca R et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin. Cancer Res.8(7), 2210–2216 (2002).
  • Ria R, Todoerti K, Berardi S et al. Gene expression profiling of bone marrow endothelial cells in patients with multiple myeloma. Clin. Cancer Res.15(17), 5369–5378 (2009).
  • Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM. Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer91(7), 1219–1230 (2001).
  • Corre J, Mahtouk K, Attal M et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia21(5), 1079–1088 (2007).
  • Arnulf B, Lecourt S, Soulier J et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia21(1), 158–163 (2007).
  • Zdzisinska B, Walter-Croneck A, Kandefer-Szerszen M. Matrix metalloproteinases-1 and -2, and tissue inhibitor of metalloproteinase-2 production is abnormal in bone marrow stromal cells of multiple myeloma patients. Leuk. Res.32(11), 1763–1769 (2008).
  • Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood108(13), 3992–3996 (2006).
  • Esteve FR, Roodman GD. Pathophysiology of myeloma bone disease. Best Pract. Res. Clin. Haematol.20(4), 613–624 (2007).
  • Bataille R, Chappard D, Basle MF. Quantifiable excess of bone resorption in monoclonal gammopathy is an early symptom of malignancy: a prospective study of 87 bone biopsies. Blood87(11), 4762–4769 (1996).
  • Terpos E, Sezer O, Croucher P, Dimopoulos MA. Myeloma bone disease and proteasome inhibition therapies. Blood110(4), 1098–1104 (2007).
  • Tian E, Zhan F, Walker R et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med.349(26), 2483–2494 (2003).
  • Qiang YW, Chen Y, Stephens O et al. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood112(1), 196–207 (2008).
  • Oshima T, Abe M, Asano J et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood106(9), 3160–3165 (2005).
  • Bataille R, Chappard D, Marcelli C et al. Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J. Clin. Invest.88(1), 62–66 (1991).
  • Tancred TM, Belch AR, Reiman T, Pilarski LM, Kirshner J. Altered expression of fibronectin and collagens I and IV in multiple myeloma and monoclonal gammopathy of undetermined significance. J. Histochem. Cytochem.57(3), 239–247 (2009).
  • Yang Y, Yaccoby S, Liu W et al. Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood100(2), 610–617 (2002).
  • Kelly T, Miao HQ, Yang Y et al. High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Res.63(24), 8749–8756 (2003).
  • Bayer-Garner IB, Sanderson RD, Dhodapkar MV, Owens RB, Wilson CS. Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. Mod. Pathol.14(10), 1052–1058 (2001).
  • Dhodapkar MV, Kelly T, Theus A, Athota AB, Barlogie B, Sanderson RD. Elevated levels of shed syndecan-1 correlate with tumour mass and decreased matrix metalloproteinase-9 activity in the serum of patients with multiple myeloma. Br. J. Haematol.99(2), 368–371 (1997).
  • Seidel C, Sundan A, Hjorth M et al. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood95(2), 388–392 (2000).
  • Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood99(4), 1405–1410 (2002).
  • Mahtouk K, Cremer FW, Reme T et al. Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma. Oncogene25(54), 7180–7191 (2006).
  • Jakobsson L, Kreuger J, Holmborn K et al. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev. Cell10(5), 625–634 (2006).
  • Filla MS, Dam P, Rapraeger AC. The cell surface proteoglycan syndecan-1 mediates fibroblast growth factor-2 binding and activity. J. Cell. Physiol.174(3), 310–321 (1998).
  • Ilan N, Elkin M, Vlodavsky I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int. J. Biochem. Cell Biol.38(12), 2018–2039 (2006).
  • Li X, Pennisi A, Yaccoby S. Role of decorin in the antimyeloma effects of osteoblasts. Blood112(1), 159–168 (2008).
  • Vincent T, Jourdan M, Sy MS, Klein B, Mechti N. Hyaluronic acid induces survival and proliferation of human myeloma cells through an interleukin-6-mediated pathway involving the phosphorylation of retinoblastoma protein. J. Biol. Chem.276(18), 14728–14736 (2001).
  • van Driel M, Gunthert U, Stauder R, Joling P, Lokhorst HM, Bloem AC. CD44 isoforms distinguish between bone marrow plasma cells from normal individuals and patients with multiple myeloma at different stages of disease. Leukemia12(11), 1821–1828 (1998).
  • Dahl IM, Turesson I, Holmberg E, Lilja K. Serum hyaluronan in patients with multiple myeloma: correlation with survival and Ig concentration. Blood93(12), 4144–4148 (1999).
  • Jain A, McKnight DA, Fisher LW et al. Small integrin-binding proteins as serum markers for prostate cancer detection. Clin. Cancer Res.15(16), 5199–5207 (2009).
  • Woitge HW, Pecherstorfer M, Horn E et al. Serum bone sialoprotein as a marker of tumour burden and neoplastic bone involvement and as a prognostic factor in multiple myeloma. Br. J. Cancer84(3), 344–351 (2001).
  • Kawano M, Hirano T, Matsuda T et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature332(6159), 83–85 (1988).
  • Klein B, Zhang XG, Lu ZY, Bataille R. Interleukin-6 in human multiple myeloma. Blood85(4), 863–872 (1995).
  • Braunstein EM, White SJ. Non-Hodgkin lymphoma of bone. Radiology135(1), 59–63 (1980).
  • Tai YT, Podar K, Kraeft SK et al. Translocation of Ku86/Ku70 to the multiple myeloma cell membrane: functional implications. Exp. Hematol.30(3), 212–220 (2002).
  • Wen XY, Stewart AK, Sooknanan RR et al. Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells. Int. J. Oncol.15(1), 173–178 (1999).
  • Reimold AM, Iwakoshi NN, Manis J et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature412(6844), 300–307 (2001).
  • Chauhan D, Li G, Auclair D et al. Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood101(9), 3606–3614 (2003).
  • Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat. Immunol.4(4), 321–329 (2003).
  • Carrasco DR, Sukhdeo K, Protopopova M et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell11(4), 349–360 (2007).
  • Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene20(42), 5991–6000 (2001).
  • Le Gouill S, Podar K, Harousseau JL, Anderson KC. Mcl-1 regulation and its role in multiple myeloma. Cell Cycle3(10), 1259–1262 (2004).
  • Hideshima T, Chauhan D, Hayashi T et al. The biological sequelae of stromal cell-derived factor-1α in multiple myeloma. Mol. Cancer Ther.1(7), 539–544 (2002).
  • Moreaux J, Cremer FW, Reme T et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood106(3), 1021–1030 (2005).
  • Tai YT, Li XF, Breitkreutz I et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res.66(13), 6675–6682 (2006).
  • Abe M, Hiura K, Wilde J et al. Role for macrophage inflammatory protein (MIP)-1α and MIP-1β in the development of osteolytic lesions in multiple myeloma. Blood100(6), 2195–2202 (2002).
  • Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY. Macrophage inflammatory protein 1-α (MIP-1 α) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood101(9), 3568–3573 (2003).
  • Choi SJ, Cruz JC, Craig F et al. Macrophage inflammatory protein 1-α is a potential osteoclast stimulatory factor in multiple myeloma. Blood96(2), 671–675 (2000).
  • Bloomston M, Zervos EE, Rosemurgy AS 2nd. Matrix metalloproteinases and their role in pancreatic cancer: a review of preclinical studies and clinical trials. Ann. Surg. Oncol.9(7), 668–674 (2002).
  • Birmann BM, Giovannucci E, Rosner B, Anderson KC, Colditz GA. Body mass index, physical activity, and risk of multiple myeloma. Cancer Epidemiol. Biomarkers Prev.16(7), 1474–1478 (2007).
  • Tucci A, Bonadonna S, Cattaneo C, Ungari M, Giustina A, Guiseppe R. Transformation of a MGUS to overt multiple myeloma: the possible role of a pituitary macroadenoma secreting high levels of insulin-like growth factor 1 (IGF-1). Leuk. Lymphoma44(3), 543–545 (2003).
  • Standal T, Borset M, Lenhoff S et al. Serum insulin like growth factor is not elevated in patients with multiple myeloma but is still a prognostic factor. Blood100(12), 3925–3929 (2002).
  • Shaughnessy J, Jacobson J, Sawyer J et al. Continuous absence of metaphase-defined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with Total Therapy I: interpretation in the context of global gene expression. Blood101(10), 3849–3856 (2003).
  • Qiang YW, Yao L, Tosato G, Rudikoff S. Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood103(1), 301–308 (2004).
  • Ehrlich LA, Chung HY, Ghobrial I et al. IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood106(4), 1407–1414 (2005).
  • Yamaguchi T, Yamauchi M, Sugimoto T et al. The extracellular calcium Ca2+o-sensing receptor is expressed in myeloma cells and modulates cell proliferation. Biochem. Biophys. Res. Commun.299(4), 532–538 (2002).
  • Yano S, Macleod RJ, Chattopadhyay N et al. Calcium-sensing receptor activation stimulates parathyroid hormone-related protein secretion in prostate cancer cells: role of epidermal growth factor receptor transactivation. Bone35(3), 664–672 (2004).
  • Jackson C, Nguyen M, Arkell J, Sambrook P. Selective matrix metalloproteinase (MMP) inhibition in rheumatoid arthritis – targetting gelatinase A activation. Inflamm. Res.50(4), 183–186 (2001).
  • Lindberg RL, De Groot CJ, Montagne L et al. The expression profile of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in lesions and normal appearing white matter of multiple sclerosis. Brain124(Pt 9), 1743–1753 (2001).
  • Vihinen P, Kahari VM. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer99(2), 157–166 (2002).
  • Szabova L, Chrysovergis K, Yamada SS, Holmbeck K. MT1–MMP is required for efficient tumor dissemination in experimental metastatic disease. Oncogene27(23), 3274–3281 (2008).
  • Barille S, Akhoundi C, Collette M et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood90(4), 1649–1655 (1997).
  • Vacca A, Ribatti D, Presta M et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood93(9), 3064–3073 (1999).
  • Wahlgren J, Maisi P, Sorsa T et al. Expression and induction of collagenases (MMP-8 and -13) in plasma cells associated with bone-destructive lesions. J. Pathol.194(2), 217–224 (2001).
  • Vacca A, Ria R, Ribatti D et al. A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica88(2), 176–185 (2003).
  • Barille S, Bataille R, Rapp MJ, Harousseau JL, Amiot M. Production of metalloproteinase-7 (Matrilysin) by human myeloma cells and its potential involvement in metalloproteinase-2 activation. J. Immunol.163(10), 5723–5728 (1999).
  • Werb Z, Mainardi CL, Vater CA, Harris ED Jr. Endogenous activiation of latent collagenase by rheumatoid synovial cells. Evidence for a role of plasminogen activator. N. Engl. J. Med.296(18), 1017–1023 (1977).
  • Devy L, Noel A, Baramova E et al. Production and activation of matrix metalloprotease-9 (MMP-9) by HL-60 promyelocytic leukemia cells. Biochem. Biophys. Res. Commun.238(3), 842–846 (1997).
  • Asosingh K, Menu E, Van Valckenborgh E et al. Mechanisms involved in the differential bone marrow homing of CD45 subsets in 5T murine models of myeloma. Clin. Exp. Metastasis19(7), 583–591 (2002).
  • Hjertner O, Qvigstad G, Hjorth-Hansen H et al. Expression of urokinase plasminogen activator and the urokinase plasminogen activator receptor in myeloma cells. Br. J. Haematol.109(4), 815–822 (2000).
  • Thabard W, Barille S, Collette M et al. Myeloma cells release soluble interleukin-6Ra in relation to disease progression by two distinct mechanisms: alternative splicing and proteolytic cleavage. Clin. Cancer Res.5(10), 2693–2697 (1999).
  • Hargreaves PG, Wang F, Antcliff J et al. Human myeloma cells shed the interleukin-6 receptor: inhibition by tissue inhibitor of metalloproteinase-3 and a hydroxamate-based metalloproteinase inhibitor. Br. J. Haematol.101(4), 694–702 (1998).
  • Vacca A, Ribatti D, Roncali L et al. Bone marrow angiogenesis and progression in multiple myeloma. Br. J. Haematol.87(3), 503–508 (1994).
  • Van Valckenborgh E, De Raeve H, Devy L et al. Murine 5T multiple myeloma cells induce angiogenesis In vitro and in vivo. Br. J. Cancer86(5), 796–802 (2002).
  • Moses MA. The regulation of neovascularization of matrix metalloproteinases and their inhibitors. Stem Cells15(3), 180–189 (1997).
  • Van Valckenborgh E, Bakkus M, Munaut C et al. Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int. J. Cancer101(6), 512–518 (2002).
  • Sato T, Foged NT, Delaisse JM. The migration of purified osteoclasts through collagen is inhibited by matrix metalloproteinase inhibitors. J. Bone Miner. Res.13(1), 59–66 (1998).
  • Holliday LS, Welgus HG, Fliszar CJ, Veith GM, Jeffrey JJ, Gluck SL. Initiation of osteoclast bone resorption by interstitial collagenase. J. Biol. Chem.272(35), 22053–22058 (1997).
  • Everts V, Delaisse JM, Korper W, Beertsen W. Cysteine proteinases and matrix metalloproteinases play distinct roles in the subosteoclastic resorption zone. J. Bone Miner. Res.13(9), 1420–1430 (1998).
  • Derenne S, Amiot M, Barille S et al. Zoledronate is a potent inhibitor of myeloma cell growth and secretion of IL-6 and MMP-1 by the tumoral environment. J. Bone Miner. Res.14(12), 2048–2056 (1999).
  • Hajitou A, Sounni NE, Devy L et al. Down-regulation of vascular endothelial growth factor by tissue inhibitor of metalloproteinase-2: effect on in vivo mammary tumor growth and angiogenesis. Cancer Res.61(8), 3450–3457 (2001).
  • Spurbeck WW, Ng CY, Strom TS, Vanin EF, Davidoff AM. Enforced expression of tissue inhibitor of matrix metalloproteinase-3 affects functional capillary morphogenesis and inhibits tumor growth in a murine tumor model. Blood100(9), 3361–3368 (2002).
  • Ikenaka Y, Yoshiji H, Kuriyama S et al. Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits tumor growth and angiogenesis in the TIMP-1 transgenic mouse model. Int. J. Cancer105(3), 340–346 (2003).
  • Docherty AJ, Lyons A, Smith BJ et al. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature318(6041), 66–69 (1985).
  • Hayakawa T. Tissue inhibitors of metalloproteinases and their cell growth-promoting activity. Cell Struct. Funct.19(3), 109–114 (1994).
  • Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett.298(1), 29–32 (1992).
  • Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell Biol.74(2), 111–122 (1997).
  • Hernandez-Barrantes S, Toth M, Bernardo MM et al. Binding of active (57 kDa) membrane type 1-matrix metalloproteinase (MT1-MMP) to tissue inhibitor of metalloproteinase (TIMP)-2 regulates MT1-MMP processing and pro-MMP-2 activation. J. Biol. Chem.275(16), 12080–12089 (2000).
  • Ahonen M, Baker AH, Kahari VM. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res.58(11), 2310–2315 (1998).
  • Baker AH, George SJ, Zaltsman AB, Murphy G, Newby AC. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br. J. Cancer79(9–10), 1347–1355 (1999).
  • Guedez L, Stetler-Stevenson WG, Wolff L et al.In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J. Clin. Invest.102(11), 2002–2010 (1998).
  • Li G, Fridman R, Kim HR. Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells. Cancer Res.59(24), 6267–6275 (1999).
  • Terpos E, Dimopoulos MA, Shrivastava V et al. High levels of serum TIMP-1 correlate with advanced disease and predict for poor survival in patients with multiple myeloma treated with novel agents. Leuk. Res.34(3), 399–402 (2009).
  • Guedez L, Martinez A, Zhao S et al. Tissue inhibitor of metalloproteinase 1 (TIMP-1) promotes plasmablastic differentiation of a Burkitt lymphoma cell line: implications in the pathogenesis of plasmacytic/plasmablastic tumors. Blood105(4), 1660–1668 (2005).
  • Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood93(5), 1658–1667 (1999).
  • Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS. Adhesion to fibronectin via β1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene19(38), 4319–4327 (2000).
  • Vacca A, Ria R, Presta M et al. α(v)β(3) integrin engagement modulates cell adhesion, proliferation, and protease secretion in human lymphoid tumor cells. Exp. Hematol.29(8), 993–1003 (2001).
  • Lenz G, Wright G, Dave SS et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med.359(22), 2313–2323 (2008).
  • International Myeloma Working Group: criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br. J. Haematol.121, 749–757 (2003).
  • Harousseau JL and Moreau P. Autologous hematopoietic stem cell transplantion for multiple myeloma. N. Engl. J. Med.360(25), 2645–2654 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.