75
Views
30
CrossRef citations to date
0
Altmetric
Review

MicroRNA binding site polymorphisms as biomarkers of cancer risk

&
Pages 817-829 | Published online: 09 Jan 2014

References

  • Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis29(7), 1306–1311 (2008).
  • Medina PP, Slack FJ. MicroRNAs and cancer: an overview. Cell Cycle7(16), 2485–2492 (2008).
  • Chang TC, Mendell JT. MicroRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics. Hum. Genet.8, 215–239 (2007).
  • Sheng Y, Engstrom PG, Lenhard B. Mammalian microRNA prediction through a support vector machine model of sequence and structure. PloS ONE2(9), e946 (2007).
  • Griffiths-Jones S. miRBase: the microRNA sequence database. Methods Mol. Biol.342, 129–138 (2006).
  • Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development132(21), 4653–4662 (2005).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2), 281–297 (2004).
  • Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J. Clin. Oncol.27(34), 5848–5856 (2009).
  • Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell115(2), 209–216 (2003).
  • Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell115(2), 199–208 (2003).
  • Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev.18(5), 504–511 (2004).
  • Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3´UTR. Genes Dev.18(2), 132–137 (2004).
  • Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol.3(3), e85 (2005).
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell136(2), 215–233 (2009).
  • Steitz JA, Vasudevan S. miRNPs: versatile regulators of gene expression in vertebrate cells. Biochem. Soc. Trans.37(Pt 5), 931–935 (2009).
  • Richter JD. Think you know how miRNAs work? Think again. Nat. Struct. Mol. Biol.15(4), 334–336 (2008).
  • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet.9(2), 102–114 (2008).
  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human microRNA targets. PLoS Biol.2(11), e363 (2004).
  • Maragkakis M, Reczko M, Simossis VA et al. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res.37(Web Server issue), W273–W276 (2009).
  • Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA10(10), 1507–1517 (2004).
  • Rusinov V, Baev V, Minkov IN, Tabler M. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res.33(Web Server issue), W696–W700 (2005).
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120(1), 15–20 (2005).
  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell115(7), 787–798 (2003).
  • Li L, Xu J, Yang D, Tan X, Wang H. Computational approaches for microRNA studies: a review. Mamm. Genome21(1–2), 1–12 (2009).
  • Rajewsky N. microRNA target predictions in animals. Nat. Genet.38(Suppl.), S8–S13 (2006).
  • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat. Genet.39(10), 1278–1284 (2007).
  • Thadani R, Tammi MT. MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinform.7(Suppl. 5), S20 (2006).
  • Miranda KC, Huynh T, Tay Y et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell126(6), 1203–1217 (2006).
  • Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature455(7209), 64–71 (2008).
  • Selbach M, Schwanhausser B, Thierfelder N et al. Widespread changes in protein synthesis induced by microRNAs. Nature455, 58–63 (2008).
  • Petrelli NJ, Winer EP, Brahmer J et al. Clinical Cancer Advances 2009: major research advances in cancer treatment, prevention, and screening – a report from the American Society of Clinical Oncology. J. Clin. Oncol.27(35), 6052–6069 (2009).
  • Paranjape T, Slack FJ, Weidhaas JB. MicroRNAs: tools for cancer diagnostics. Gut58(11), 1546–1554 (2009).
  • Liu CG, Calin GA, Meloon B et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. USA101(26), 9740–9744 (2004).
  • Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer6(4), 259–269 (2006).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature435(7043), 834–838 (2005).
  • Klein U, Lia M, Crespo M et al. The DLEU2/miR-15a/16–1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell17(1), 28–40 (2010).
  • Pharoah PD, Dunning AM, Ponder BA, Easton DF. Association studies for finding cancer-susceptibility genetic variants. Nat. Rev. Cancer4(11), 850–860 (2004).
  • Yu Z, Li Z, Jolicoeur N et al. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res.35(13), 4535–4541 (2007).
  • He H, Jazdzewski K, Li W et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA102(52), 19075–19080 (2005).
  • Melillo RM, Castellone MD, Guarino V et al. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J. Clin. Invest.115(4), 1068–1081 (2005).
  • Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC–RAS–BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res.63(7), 1454–1457 (2003).
  • Nikiforova MN, Chiosea SI, Nikiforov YE. MicroRNA expression profiles in thyroid tumors. Endocr. Pathol.20(2), 85–91 (2009).
  • Felli N, Fontana L, Pelosi E et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl Acad. Sci. USA102(50), 18081–18086 (2005).
  • Natali PG, Berlingieri MT, Nicotra MR et al. Transformation of thyroid epithelium is associated with loss of c-kit receptor. Cancer Res.55(8), 1787–1791 (1995).
  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2008. CA Cancer J. Clin.58(2), 71–96 (2008).
  • Robles-Diaz L, Goldfrank DJ, Kauff ND, Robson M, Offit K. Hereditary ovarian cancer in Ashkenazi Jews. Fam. Cancer3(3–4), 259–264 (2004).
  • Wacholder S, Struewing JP, Hartge P, Greene MH, Tucker MA. Breast cancer risks for BRCA1/2 carriers. Science306(5705), 2187–2191; author reply 2187–2191 (2004).
  • Kontorovich T, Levy A, Korostishevsky M, Nir U, Friedman E. SNPs in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high risk women. Int. J. Cancer(2009).
  • Iorio MV, Ferracin M, Liu CG et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.65(16), 7065–7070 (2005).
  • Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin. Chem.55(4), 623–631 (2009).
  • Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERα) and represses ERα messenger RNA and protein expression in breast cancer cell lines. Mol. Endocrinol.21(5), 1132–1147 (2007).
  • Brendle A, Lei H, Brandt A et al. Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis29(7), 1394–1399 (2008).
  • Dalmay T, Edwards DR. MicroRNAs and the hallmarks of cancer. Oncogene25(46), 6170–6175 (2006).
  • Tchatchou S, Jung A, Hemminki K et al. A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis30(1), 59–64 (2009).
  • Saetrom P, Biesinger J, Li SM et al. A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis. Cancer Res.69(18), 7459–7465 (2009).
  • Blenkiron C, Goldstein LD, Thorne NP et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol.8(10), R214 (2007).
  • Mattie MD, Benz CC, Bowers J et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer5, 24 (2006).
  • Song F, Zheng H, Liu B et al. An miR-502-binding site single-nucleotide polymorphism in the 3´-untranslated region of the SET8 gene is associated with early age of breast cancer onset. Clin. Cancer Res.15(19), 6292–6300 (2009).
  • van Hest LP, Ruijs MW, Wagner A et al. Two TP53 germline mutations in a classical Li-Fraumeni syndrome family. Fam. Cancer6(3), 311–316 (2007).
  • Tabori U, Nanda S, Druker H, Lees J, Malkin D. Younger age of cancer initiation is associated with shorter telomere length in Li-Fraumeni syndrome. Cancer Res.67(4), 1415–1418 (2007).
  • Pongsavee M, Yamkamon V, Dakeng S et al. The BRCA1 3´-UTR: 5711+421T/T_5711+1286T/T genotype is a possible breast and ovarian cancer risk factor. Genet. Test. Mol. Biomarkers13(3), 307–317 (2009).
  • Nicoloso MS, Sun H, Spizzo R et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res.70(7), 2789–2798 (2010).
  • Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5´UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell30(4), 460–471 (2008).
  • Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science318(5858), 1931–1934 (2007).
  • Peto R. Influence of dose and duration of smoking on lung cancer rates. IARC Sci. Publ. (74), 23–33 (1986).
  • Alberg AJ, Samet JM. Epidemiology of lung cancer. Chest123(Suppl. 1), 21S–49S (2003).
  • Johnson SM, Grosshans H, Shingara J et al. RAS is regulated by the let-7 microRNA family. Cell120(5), 635–647 (2005).
  • Calin GA, Sevignani C, Dumitru CD et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA101(9), 2999–3004 (2004).
  • Takamizawa J, Konishi H, Yanagisawa K et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.64(11), 3753–3756 (2004).
  • Yanaihara N, Caplen N, Bowman E et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell9(3), 189–198 (2006).
  • Rodenhuis S, Slebos RJ. Clinical significance of ras oncogene activation in human lung cancer. Cancer Res.52(Suppl. 9), 2665S–2669S (1992).
  • Lea IA, Jackson MA, Li X, Bailey S, Peddada SD, Dunnick JK. Genetic pathways and mutation profiles of human cancers: site- and exposure-specific patterns. Carcinogenesis28(9), 1851–1858 (2007).
  • Hoa M, Davis SL, Ames SJ, Spanjaard RA. Amplification of wild-type K-ras promotes growth of head and neck squamous cell carcinoma. Cancer Res.62(24), 7154–7156 (2002).
  • Chin LJ, Ratner E, Leng S et al. A SNP in a let-7 microRNA complementary site in the KRAS 3´ untranslated region increases non-small cell lung cancer risk. Cancer Res.68(20), 8535–8540 (2008).
  • Nelson HH, Christiani DC, Mark EJ, Wiencke JK, Wain JC, Kelsey KT. Implications and prognostic value of K-ras mutation for early-stage lung cancer in women. J. Natl Cancer Inst.91(23), 2032–2038 (1999).
  • Nelson HH, Christensen BC, Plaza SL, Wiencke JK, Marsit CJ, Kelsey KT. KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer69(1), 51–53 (2009).
  • Christensen BC, Moyer BJ, Avissar M et al. A let-7 microRNA-binding site polymorphism in the KRAS 3´ UTR is associated with reduced survival in oral cancers. Carcinogenesis30(6), 1003–1007 (2009).
  • Graziano F, Canestrari E, Loupakis F et al. Genetic modulation of the Let-7 microRNA binding to KRAS 3´-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan. Pharmacogenomics J. DOI:10.1038/tpj.2010.9. (2010) (Epub ahead of print).
  • Liu X, Chen Z, Yu J, Xia J, Zhou X. MicroRNA profiling and head and neck cancer. Comp. Funct. Genomics837514 (2009).
  • Jemal A, Murray T, Ward E et al. Cancer statistics, 2005. CA Cancer J. Clin.55(1), 10–30 (2005).
  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2006. CA Cancer J. Clin.56(2), 106–130 (2006).
  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J. Clin.57(1), 43–66 (2007).
  • Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res.48(11), 3282–3287 (1988).
  • Furniss CS, McClean MD, Smith JF et al. Human papillomavirus 16 and head and neck squamous cell carcinoma. Int. J. Cancer120(11), 2386–2392 (2007).
  • Ng SK, Kabat GC, Wynder EL. Oral cavity cancer in non-users of tobacco. J. Natl Cancer Inst.85(9), 743–745 (1993).
  • Tran N, McLean T, Zhang X et al. MicroRNA expression profiles in head and neck cancer cell lines. Biochem. Biophys. Res. Commun.358(1), 12–17 (2007).
  • Chang SS, Jiang WW, Smith I et al. MicroRNA alterations in head and neck squamous cell carcinoma. Int. J. Cancer123(12), 2791–2797 (2008).
  • Ramdas L, Giri U, Ashorn CL et al. miRNA expression profiles in head and neck squamous cell carcinoma and adjacent normal tissue. Head Neck31(5), 642–654 (2009).
  • Potter JD. Colorectal cancer: molecules and populations. J. Natl Cancer Inst.91(11), 916–932 (1999).
  • Aslam MI, Taylor K, Pringle JH, Jameson JS. MicroRNAs are novel biomarkers of colorectal cancer. Br. J. Surg.96(7), 702–710 (2009).
  • Xu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res.37(Web Server issue), W600–W605 (2009).
  • Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: a primer. Am. J. Pathol.171(3), 728–738 (2007).
  • Volinia S, Calin GA, Liu CG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103(7), 2257–2261 (2006).
  • Cummins JM, He Y, Leary RJ et al. The colorectal microRNAome. Proc. Natl Acad. Sci. USA103(10), 3687–3692 (2006).
  • Xi Y, Formentini A, Chien M et al. Prognostic values of microRNAs in colorectal cancer. Biomark. Insights2, 113–121 (2006).
  • Asangani IA, Rasheed SA, Nikolova DA et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene27(15), 2128–2136 (2008).
  • Grady WM, Parkin RK, Mitchell PS et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene27(27), 3880–3888 (2008).
  • Guo C, Sah JF, Beard L, Willson JK, Markowitz SD, Guda K. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer47(11), 939–946 (2008).
  • Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res.1(12), 882–891 (2003).
  • Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl Acad. Sci. USA104(39), 15472–15477 (2007).
  • Monzo M, Navarro A, Bandres E et al. Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res.18(8), 823–833 (2008).
  • Landi D, Gemignani F, Naccarati A et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis29(3), 579–584 (2008).
  • Nguyen MH, Keeffe EB. Epidemiology and treatment outcomes of patients with chronic hepatitis C and genotypes 4 to 9. Rev. Gastroenterol Disord.4(Suppl. 1), S14–S21 (2004).
  • Srivatanakul P, Sriplung H, Deerasamee S. Epidemiology of liver cancer: an overview. Asian Pac. J. Cancer Prev.5(2), 118–125 (2004).
  • Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat. Genet.31(4), 339–346 (2002).
  • Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut54(4), 533–539 (2005).
  • Caldwell S, Park SH. The epidemiology of hepatocellular cancer: from the perspectives of public health problem to tumor biology. J. Gastroenterol.44(Suppl. 19), 96–101 (2009).
  • Chen S, He Y, Ding J et al. An insertion/deletion polymorphism in the 3´ untranslated region of β-transducin repeat-containing protein (βTrCP) is associated with susceptibility for hepatocellular carcinoma in Chinese. Biochem. Biophys. Res. Commun.391(1), 552–556 (2010).
  • Murakami Y, Yasuda T, Saigo K et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene25(17), 2537–2545 (2006).
  • Jiang J, Gusev Y, Aderca I et al. Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin. Cancer Res.14(2), 419–427 (2008).
  • Gao Y, He Y, Ding J et al. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1α 3´ untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis30(12), 2064–2069 (2009).
  • Apte RN, Voronov E. Is interleukin-1 a good or bad ‘guy’ in tumor immunobiology and immunotherapy? Immunol. Rev.222, 222–241 (2008).
  • Busino L, Donzelli M, Chiesa M et al. Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature426(6962), 87–91 (2003).
  • Ougolkov A, Zhang B, Yamashita K et al. Associations among β-TrCP, an E3 ubiquitin ligase receptor, β-catenin, and NF-κB in colorectal cancer. J. Natl Cancer Inst.96(15), 1161–1170 (2004).
  • Kudo Y, Guardavaccaro D, Santamaria PG et al. Role of F-box protein βTrcp1 in mammary gland development and tumorigenesis. Cell. Mol. Biol.24(18), 8184–8194 (2004).
  • Koch A, Waha A, Hartmann W et al. Elevated expression of Wnt antagonists is a common event in hepatoblastomas. Clin. Cancer Res.11(12), 4295–4304 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.