207
Views
30
CrossRef citations to date
0
Altmetric
Review

Early detection and screening of lung cancer

, , , , &
Pages 799-815 | Published online: 09 Jan 2014

References

  • Jemal A, Siegel R, Ward E et al. Cancer statistics 2008. CA Cancer J. Clin.58(2), 71–96 (2008).
  • Goldstraw P, Crowley J, Chansky K et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J. Thorac. Oncol.2(8), 706–714 (2007).
  • Mulshine JL, Sullivan DC. Clinical practice. Lung cancer screening. N. Engl. J. Med.352(26), 2714–2720 (2005).
  • Levi F, Randimbison L, Te VC, La VC. Second primary cancers in patients with lung carcinoma. Cancer86(1), 186–190 (1999).
  • Skillrud DM, Offord KP, Miller RD. Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann. Intern. Med.105(4), 503–507 (1986).
  • Tockman MS, Anthonisen NR, Wright EC, Donithan MG. Airways obstruction and the risk for lung cancer. Ann. Intern. Med.106(4), 512–518 (1987).
  • Kennedy TC, Proudfoot SP, Franklin WA et al. Cytopathological analysis of sputum in patients with airflow obstruction and significant smoking histories. Cancer Res.56(20), 4673–4678 (1996).
  • Samet JM, Humble CG, Pathak DR. Personal and family history of respiratory disease and lung cancer risk. Am. Rev. Respir. Dis.134(3), 466–470 (1986).
  • Hirsch FR, Prindiville SA, Miller YE et al. Fluorescence versus white-light bronchoscopy for detection of preneoplastic lesions: a randomized study. J. Natl Cancer Inst.93(18), 1385–1391 (2001).
  • Byers T, Wolf HJ, Franklin WA et al. Sputum cytologic atypia predicts incident lung cancer: defining latency and histologic specificity. Cancer Epidemiol. Biomarkers Prev.17(1), 158–162 (2008).
  • Kurie JM, Lee JS, Morice RC et al. Autofluorescence bronchoscopy in the detection of squamous metaplasia and dysplasia in current and former smokers. J. Natl Cancer Inst.90(13), 991–995 (1998).
  • Bach PB, Kattan MW, Thornquist MD et al. Variations in lung cancer risk among smokers. J. Natl Cancer Inst.95(6), 470–478 (2003).
  • Govindan R. Lung cancer in never smokers: a new hot area of research. Lancet Oncol.11(4), 304–305 (2010).
  • Frost JK, Ball WC Jr, Levin ML et al. Early lung cancer detection: results of the initial (Prevalence) radiologic and cytologic screening in the Johns Hopkins study. Am. Rev. Respir. Dis.130(4), 549–554 (1984).
  • Kubik A, Parkin DM, Khlat M, Erban J, Polak J, Adamec M. Lack of benefit from semi-annual screening for cancer of the lung: follow-up report of a randomized controlled trial on a population of high-risk males in Czechoslovakia. Int. J. Cancer45(1), 26–33 (1990).
  • Flehinger BJ, Melamed MR, Zaman MB, Heelan RT, Perchick WB, Martini N. Early lung cancer detection: results of the initial (Prevalence) radiologic and cytologic screening in the Memorial Sloan-Kettering study. Am. Rev. Respir. Dis.130(4), 555–560 (1984).
  • Melamed MR, Flehinger BJ, Zaman MB, Heelan RT, Perchick WA, Martini N. Screening for early lung cancer. Results of the Memorial Sloan-Kettering study in New York. Chest86(1), 44–53 (1984).
  • Fontana RS, Sanderson DR, Woolner LB et al. Screening for lung cancer. A critique of the Mayo Lung Project. Cancer7(4 Suppl.), 1155–1164 (1991).
  • Marcus PM, Bergstralh EJ, Fagerstrom RM et al. Lung cancer mortality in the Mayo Lung Project: impact of extended follow-up. J. Natl. Cancer Inst.92(16), 1308–1316 (2000).
  • Kubik A, Polak J. Lung cancer detection. Results of a randomized prospective study in Czechoslovakia. Cancer57(12), 2427–2437 (1986).
  • Kubik A, Parkin J, Zaloukal P. Czech Study on Lung Cancer Screening: post-trial follow-up of lung cancer deaths up to year 15 since enrollment. Cancer89(suppl. 1), 2363–2368 (2000).
  • Gohagan J, Levin D, Prorok P, Sullivan D. The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Controlled Clin. Trials21, 249S–400S (2000).
  • Oken MM, Marcus PM, Hu P et al. Baseline chest radiograph for lung cancer detection in the randomized Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. J. Natl Cancer Inst.97(24), 1832–1839 (2005).
  • Kaneko M, Eguchi K, Ohmatsu H et al. Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology201(3), 798–802 (1996).
  • Sone S, Takashima S, Li F et al. Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet351(9111), 1242–1245 (1998).
  • Henschke CI, McCauley DI, Yankelevitz DF et al. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet354(9173), 99–105 (1999).
  • Henschke CI, Yankelevitz DF, Naidich DP et al. CT screening for lung cancer: suspiciousness of nodules according to size on baseline scans. Radiology231(1), 164–168 (2004).
  • Obuchowski NA, Graham RJ, Baker ME, Powell KA. Ten criteria for effective screening: their application to multislice CT screening for pulmonary and colorectal cancers. AJR Am. J. Roentgenol.176(6), 1357–1362 (2001).
  • Yankelevitz DF, Reeves AP, Kostis WJ, Zhao B, Henschke CI. Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology217(1), 251–256 (2000).
  • van Klaveren RJ, Oudkerk M, Prokop M et al. Management of lung nodules detected by volume CT scanning. N. Engl. J. Med.361(23), 2221–2229 (2009).
  • Godoy MC, Naidich DP. Subsolid pulmonary nodules and the spectrum of peripheral adenocarcinomas of the lung: recommended interim guidelines for assessment and management. Radiology253(3), 606–622 (2009).
  • Travis WD, Garg K, Franklin WA et al. Evolving concepts in the pathology and computed tomography imaging of lung adenocarcinoma and bronchioloalveolar carcinoma. J. Clin. Oncol.23(14), 3279–3287 (2005).
  • Mahadevia PJ, Fleisher LA, Frick KD, Eng J, Goodman SN, Powe NR. Lung cancer screening with helical computed tomography in older adult smokers: a decision and cost–effectiveness analysis. JAMA289(3), 313–322 (2003).
  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • McWilliams AM, Mayo JR, Ahn MI, MacDonald SL, Lam SC. Lung cancer screening using multi-slice thin-section computed tomography and autofluorescence bronchoscopy. J. Thorac. Oncol.1(1), 61–68 (2006).
  • Kennedy TC, McWilliams A, Edell E et al. Bronchial intraepithelial neoplasia/early central airways lung cancer: ACCP evidence-based clinical practice guidelines (2nd Edition). Chest132(3 Suppl.), 221S–233S.
  • Lam S, Kennedy T, Unger M et al. Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest113(3), 696–702 (1998).
  • Haussinger K, Becker H, Stanzel F et al. Autofluorescence bronchoscopy with white light bronchoscopy compared with white light bronchoscopy alone for the detection of precancerous lesions: a European randomised controlled multicentre trial. Thorax60(6), 496–503 (2005).
  • Lam S, MacAulay C, Hung J, LeRiche J, Profio AE, Palcic B. Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device. J. Thorac. Cardiovasc. Surg.105(6), 1035–1040 (1993).
  • Lam S, MacAulay C, Leriche JC, Ikeda N, Palcic B. Early localization of bronchogenic carcinoma. Diagn. Ther. Endosc.1(2), 75–78 (1994).
  • Venmans BJ, Van Boxem TJ, Smit EF, Postmus PE, Sutedja TG. Results of two years expenience with fluorescence bronchoscopy in detection of preinvasive bronchial neoplasia. Diagn. Ther. Endosc.5(2), 85–90 (1999).
  • Ikeda K, Honda H, Katsumi T, Okunaka T, Furukawa K, Tsuchida T. Early detection of bronchial lesions using lung imaging fluorescence endoscopy. Diagn. Ther. Endosc.5(2), 85–90. 1999.
  • Vermylen P, Pierard P, Roufosse C et al. Detection of bronchial preneoplastic lesions and early lung cancer with fluorescence bronchoscopy: a study about its ambulatory feasibility under local anaesthesis. Lung Cancer25(3), 161–168 (1999).
  • van Rens MT, Schramel FM, Elbers JR, Lammers JW. The clinical value of lung imaging fluorescence endoscopy for detecting synchronous lung cancer. Lung Cancer32(1), 13–18 (2001).
  • Shibuya K, Fujisawa T, Hoshino H et al. Fluorescence bronchoscopy in the detection of preinvasive bronchial lesions in patients with sputum cytology suspicious or positive for malignancy. Lung Cancer32(1), 19–25 (2001).
  • Sato M, Sakurada A, Sagawa M et al. Diagnostic results before and after introduction of autofluorescence bronchoscopy in patients suspected of having lung cancer detected by sputum cytology in lung cancer mass screening. Lung Cancer32(3), 247–253 (2001).
  • Moro-Sibilot D, Jeanmart M, Lantuejoul S et al. Cigarette smoking, preinvasive bronchial lesions, and autofluorescence bronchoscopy. Chest122(6), 1902–1908 (2002).
  • Beamis JF Jr, Ernst A, Simoff M, Yung R, Mathur P. A multicenter study comparing autofluorescence bronchoscopy to white light bronchoscopy using a non-laser light stimulation system. Chest125(5 Suppl.), 148S–149S (2004).
  • Chhajed PN, Shibuya K, Hoshino H et al. A comparison of video and autofluorescence bronchoscopy in patients at high risk of lung cancer. Eur. Respir. J.25(6), 951–955 (2005).
  • Chiyo M, Shibuya K, Hoshino H et al. Effective detection of bronchial preinvasive lesions by a new autofluorescence imaging bronchovideoscope system. Lung Cancer48(3), 307–313 (2005).
  • Lam B, Wong MP, Fung SL et al. The clinical value of autofluorescence bronchoscopy for the diagnosis of lung cancer. Eur. Respir. J.28(5), 915–919 (2006).
  • Ikeda N, Honda H, Hayashi A et al. Early detection of bronchial lesions using newly developed videoendoscopy-based autofluorescence bronchoscopy. Lung Cancer52(1), 21–27 (2006).
  • Herth FJ, Eberhardt R, Anantham D, Gompelmann D, Zakaria MW, Ernst A. Narrow-band imaging bronchoscopy increases the specificity of bronchoscopic early lung cancer detection. J. Thorac. Oncol.4(9), 1060–1065 (2009).
  • Vincent BD, Fraig M, Silvestri GA. A pilot study of narrow-band imaging compared with white light bronchoscopy for evaluation of normal airways and premalignant and malignant airways disease. Chest131(6), 1794–1799 (2007).
  • Peled N, Flex D, Raviv Y et al. The role of routine bronchoscopy for early detection of bronchial stump recurrence of lung cancer: 1 year post-surgery. Lung Cancer65(3), 319–323 (2009).
  • Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science254(5035), 1178–1181 (1991).
  • Fujimoto JG, Brezinski ME, Tearney GJ et al. Optical biopsy and imaging using optical coherence tomography. Nat. Med.1(9), 970–972 (1995).
  • Tsuboi M, Hayashi A, Ikeda N et al. Optical coherence tomography in the diagnosis of bronchial lesions. Lung Cancer49(3), 387–394 (2005).
  • Whiteman SC, Yang Y, Gey van Pittius D, Stephens M, Parmer J, Spiteri MA. Optical coherence tomography: real-time imaging of bronchial airways microstructure and detection of inflammatory/neoplastic morphologic changes. Clin. Cancer Res.12(3 Pt 1), 813–818 (2006).
  • Tearney GJ, Brezinski ME, Bouma BE et al.In vivo endoscopic optical biopsy with optical coherence tomography. Science276(5321), 2037–2039 (1997).
  • Lam S, Standish B, Baldwin C et al.In vivo optical coherence tomography imaging of preinvasive bronchial lesions. Clin. Cancer Res.14(7), 2006–2011 (2008).
  • Thiberville L, Moreno-Swirc S, Vercauteren T, Peltier E, Cave C, Bourg HG. In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am. J. Respir. Crit. Care Med.175(1), 22–31 (2007).
  • Thiberville L, Salaun M, Lachkar S et al. Human In vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur. Respir. J.33(5), 974–985 (2009).
  • Melamed MR. Lung cancer screening results in the National Cancer Institute New York study. Cancer89(suppl. 11), 2356–2362 (2000).
  • Lam B, Lam SY, Wong MP et al. Sputum cytology examination followed by autofluorescence bronchoscopy: a practical way of identifying early stage lung cancer in central airway. Lung Cancer64(3), 289–294 (2009).
  • Zhang R, Shao F, Wu X, Ying K. Value of quantitative analysis of circulating cell free DNA as a screening tool for lung cancer: a meta-analysis. Lung Cancer69(2), 225–231 (2009).
  • Sozzi G, Conte D, Leon M et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J. Clin. Oncol.21(21), 3902–3908 (2003).
  • Paci M, Maramotti S, Bellesia E et al. Circulating plasma DNA as diagnostic biomarker in non-small cell lung cancer. Lung Cancer64(1), 92–97 (2009).
  • Xie GS, Hou AR, Li LY, Gao YN, Cheng SJ. Quantification of plasma DNA as a screening tool for lung cancer. Chin. Med. J. (Engl.)117(10), 1485–1488 (2004).
  • Herrera LJ, Raja S, Gooding WE et al. Quantitative analysis of circulating plasma DNA as a tumor marker in thoracic malignancies. Clin. Chem.51(1), 113–118 (2005).
  • Laktionov PP, Tamkovich SN, Rykova EY et al. Extracellular circulating nucleic acids in human plasma in health and disease. Nucleosides Nucleotides Nucleic Acids23(6–7), 879–883 (2004).
  • Holdenrieder S, Stieber P, Bodenmuller H et al. Nucleosomes in serum of patients with benign and malignant diseases. Int. J. Cancer95(2), 114–120 (2001).
  • Yoon KA, Park S, Lee SH, Kim JH, Lee JS. Comparison of circulating plasma DNA levels between lung cancer patients and healthy controls. J. Mol. Diagn.11(3), 182–185 (2009).
  • Ludovini V, Pistola L, Gregorc V et al. Plasma DNA, microsatellite alterations, and p53 tumor mutations are associated with disease-free survival in radically resected non-small cell lung cancer patients: a study of the perugia multidisciplinary team for thoracic oncology. J. Thorac. Oncol.3(4), 365–373 (2008).
  • Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res.37(3), 646–650 (1977).
  • Ulivi P, Mercatali L, Zoli W et al. Serum free DNA and COX-2 mRNA expression in peripheral blood for lung cancer detection. Thorax63(9), 843–844 (2008).
  • Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res.59(1), 67–70 (1999).
  • Usadel H, Brabender J, Danenberg KD et al. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res.62(2), 371–375 (2002).
  • Wang Y, Yu Z, Wang T, Zhang J, Hong L, Chen L. Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer. Lung Cancer56(2), 289–294 (2007).
  • Cuda G, Gallelli A, Nistico A et al. Detection of microsatellite instability and loss of heterozygosity in serum DNA of small and non-small cell lung cancer patients: a tool for early diagnosis? Lung Cancer30(3), 211–214 (2000).
  • Andriani F, Conte D, Mastrangelo T et al. Detecting lung cancer in plasma with the use of multiple genetic markers. Int. J. Cancer108(1), 91–96 (2004).
  • Sozzi G, Musso K, Ratcliffe C, Goldstraw P, Pierotti MA, Pastorino U. Detection of microsatellite alterations in plasma DNA of non-small cell lung cancer patients: a prospect for early diagnosis. Clin. Cancer Res.5(10), 2689–2692 (1999).
  • Zhong L, Coe SP, Stromberg AJ, Khattar NH, Jett JR, Hirschowitz EA. Profiling tumor-associated antibodies for early detection of non-small cell lung cancer. J. Thorac. Oncol.1(6), 513–519 (2006).
  • Chapman CJ, Murray A, McElveen JE et al. Autoantibodies in lung cancer: possibilities for early detection and subsequent cure. Thorax63(3), 228–233 (2008).
  • Tan HT, Low J, Lim SG, Chung MC. Serum autoantibodies as biomarkers for early cancer detection. FEBS J.276(23), 6880–6904 (2009).
  • Yildiz PB, Shyr Y, Rahman JS et al. Diagnostic accuracy of MALDI mass spectrometric analysis of unfractionated serum in lung cancer. J. Thorac. Oncol.2(10), 893–901 (2007).
  • Patz EF Jr, Campa MJ, Gottlin EB, Kusmartseva I, Guan XR, Herndon JE. Panel of serum biomarkers for the diagnosis of lung cancer. J. Clin. Oncol.25(35), 5578–5583 (2007).
  • Han MK, Oh YH, Kang J et al. Protein profiling in human sera for identification of potential lung cancer biomarkers using antibody microarray. Proteomics9(24), 5544–5552 (2009).
  • Skog J, Wurdinger T, van RS et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol.10(12), 1470–1476 (2008).
  • Fleischhacker M, Beinert T, Ermitsch M et al. Detection of amplifiable messenger RNA in the serum of patients with lung cancer. Ann. NY Acad. Sci.945, 179–188 (2001).
  • Kopreski MS, Benko FA, Gocke CD. Circulating RNA as a tumor marker: detection of 5T4 mRNA in breast and lung cancer patient serum. Ann. NY Acad. Sci.945, 172–178 (2001).
  • Matsunaga H, Hangai N, Aso Y et al. Application of differential display to identify genes for lung cancer detection in peripheral blood. Int. J. Cancer100(5), 592–599 (2002).
  • Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105(30), 10513–10518 (2008).
  • Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol.110(1), 13–21 (2008).
  • Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer10(1), 42–46 (2009).
  • Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA. DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene21(35), 5450–5461 (2002).
  • Belinsky SA, Liechty KC, Gentry FD et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res.66(6), 3338–3344 (2006).
  • Varella-Garcia M, Schulte AP, Wolf HJ et al. The detection of chromosomal aneusomy by fluorescence in situ hybridization in sputum predicts lung cancer incidence. Cancer Prev. Res. (Phila.)3(4), 447–453 (2010).
  • Liloglou T, Maloney P, Xinarianos G et al. Cancer-specific genomic instability in bronchial lavage: a molecular tool for lung cancer detection. Cancer Res.61(4), 624–1628 (2001).
  • Fielding P, Turnbull L, Prime W, Walshaw M, Field JK. Heterogeneous nuclear ribonucleoprotein A2/B1 up-regulation in bronchial lavage specimens: a clinical marker of early lung cancer detection. Clin. Cancer Res.5(12), 4048–4052 (1999).
  • Halling KC, Rickman OB, Kipp BR, Harwood AR, Doerr CH, Jett JR. A comparison of cytology and fluorescence in situ hybridization for the detection of lung cancer in bronchoscopic specimens. Chest130(3), 694–701 (2006).
  • Voss JS, Kipp BR, Halling KC et al. Fluorescence in situ hybridization testing algorithm improves lung cancer detection in bronchial brushing specimens. Am. J. Respir. Crit. Care Med.181(5), 478–485 (2010).
  • Spira A, Beane JE, Shah V et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat. Med.13(3), 361–366 (2007).
  • Beane J, Sebastiani P, Whitfield TH et al. A prediction model for lung cancer diagnosis that integrates genomic and clinical features. Cancer Prev. Res. (Phila.)1(1), 56–64 (2008).
  • Sridhar S, Schembri F, Zeskind J et al. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium. BMC Genomics9, 259 (2008).
  • Boyle JO, Gumus ZH, Kacker A et al. Effects of cigarette smoke on the human oral mucosal transcriptome. Cancer Prev. Res. (Phila.)3(3), 266–278 (2010).
  • Zhang X, Sebastiani P, Liu G et al. Similarities and differences between smoking-related gene expression in nasal and bronchial epithelium. Physiol. Genomics41(1), 1–8 (2010).
  • Mascaux C, Laes JF, Anthoine G et al. Evolution of microRNA expression during human bronchial squamous carcinogenesis. Eur. Respir. J.33(2), 352–359 (2009).
  • Mascaux C, Haibe-Kains B, Anthoine G et al. Evolution of gene expression and biological pathways involved at successive steps of lung squamous carcinogenesis. J. Thoracic. Oncol.4(9 Suppl. 1), S282 (2009).
  • Amann A, Spanel P, Smith D. Breath analysis: the approach towards clinical applications. Mini Rev. Med. Chem.7(2), 115–129 (2007).
  • Cao W, Duan Y. Current status of methods and techniques for breath analysis. Crit. Rev. Anal. Chem.37(1), 3–13 (2007).
  • Haick H, Hakim M, Patrascu M et al. Sniffing chronic renal failure in rat model by an array of random networks of single-walled carbon nanotubes. ACS Nano3(5), 1258–1266 (2009).
  • Peng G, Tisch U, Adams O et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol4(10), 669–673 (2009).
  • Phillips M, Cataneo RN, Cummin AR et al. Detection of lung cancer with volatile markers in the breath. Chest123(6), 2115–2123 (2003).
  • Horvath I, Lazar Z, Gyulai N, Kollai M, Losonczy G. Exhaled biomarkers in lung cancer. Eur. Respir. J.34(1), 261–275 (2009).
  • Ligor M, Ligor T, Bajtarevic A et al. Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clin. Chem. Lab. Med.47(5), 550–560 (2009).
  • Mazzone PJ. Analysis of volatile organic compounds in the exhaled breath for the diagnosis of lung cancer. J. Thorac. Oncol.3(7), 774–780 (2008).
  • Barash O, Peled N, Hirsch FR, Haick H. Sniffing the unique “odor print” of non-small-cell lung cancer with gold nanoparticles. Small5(22), 2618–2624 (2009).
  • Stat bite: lung cancer stage at diagnosis in the United States, 1995–2001. J. Natl Cancer Inst.97(24), 1805 (2005).
  • Poli D, Carbognani P, Corradi M et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir. Res.6, 71 (2005).
  • Poli D, Goldoni M, Caglieri A et al. Breath analysis in non small cell lung cancer patients after surgical tumour resection. Acta. Biomed.79(suppl.1), 64–72 (2008).
  • Sponring A, Filipiak W, Mikoviny T et al. Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro. Anticancer Res.29(1), 419–426 (2009).
  • Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc. Natl Acad. Sci. USA68(10), 2374–2376 (1971).
  • Gordon SM, Szidon JP, Krotoszynski BK, Gibbons RD, O’Neill HJ. Volatile organic compounds in exhaled air from patients with lung cancer. Clin. Chem.31(8), 1278–1282 (1985).
  • Preti G, Labows JN, Kostelc JG, Aldinger S, Daniele R. Analysis of lung air from patients with bronchogenic carcinoma and controls using gas chromatography–mass spectrometry. J. Chromatogr.432, 1–11 (1988).
  • Phillips M, Gleeson K, Hughes JM et al. Volatile organic compounds in breath as markers of lung cancer, a cross-sectional study. Lancet353(9168), 1930–1933 (1999).
  • Chen X, Xu F, Wang Y et al. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer110(4), 835–844 (2007).
  • Machado RF, Laskowski D, Deffenderfer O et al. Detection of lung cancer by sensor array analyses of exhaled breath. Am. J. Respir. Crit. Care Med.171(11), 1286–1291 (2005).
  • Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann. Thorac. Surg.60(3), 615–622 (1995).
  • Travis WD, Brambilla E, Muller-Hermerlink HK, Harris CC. Pathology and Genetics. Tumours of the Lung, Pleura, Thymus and Heart. International Agency of Research on Cancer Press (2004).
  • Kodama K, Higashiyama M, Yokouchi H et al. Prognostic value of ground-glass opacity found in small lung adenocarcinoma on high-resolution CT scanning. Lung Cancer33(1), 17–25 (2001).
  • Aoki T, Tomoda Y, Watanabe H et al. Peripheral lung adenocarcinoma: correlation of thin-section CT findings with histologic prognostic factors and survival. Radiology220(3), 803–809 (2001).
  • Suzuki K, Asamura H, Kusumoto M, Kondo H, Tsuchiya R. “Early” peripheral lung cancer: prognostic significance of ground glass opacity on thin-section computed tomographic scan. Ann. Thorac. Surg.74(5), 1635–1639 (2002).
  • Gajra A, Newman N, Gamble GP, Abraham NZ, Kohman LJ, Graziano SL. Impact of tumor size on survival in stage IA non-small cell lung cancer: a case for subdividing stage IA disease. Lung Cancer42(1), 51–57 (2003).
  • Port JL, Kent MS, Korst RJ, Libby D, Pasmantier M, Altorki NK. Tumor size predicts survival within stage IA non-small cell lung cancer. Chest124(5), 1828–1833 (2003).
  • Nakamura K, Saji H, Nakajima R et al. A Phase III randomized trial of lobectomy versus limited resection for small-sized peripheral non-small cell lung cancer (JCOG0802/WJOG4607L). Jpn. J. Clin. Oncol.40(3), 271–274 (2010).
  • Haasbeek CJ, Senan S, Smit EF, Paul MA, Slotman BJ, Lagerwaard FJ. Critical review of nonsurgical treatment options for stage I non-small cell lung cancer. Oncologist13(3), 309–319 (2008).
  • Lagerwaard FJ, Haasbeek CJ, Smit EF, Slotman BJ, Senan S. Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.70(3), 685–692 (2008).
  • Onishi H, Shirato H, Nagata Y et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J. Thorac. Oncol.2(7 Suppl. 3), S94–S100 (2007).
  • Onishi H, Araki T, Shirato H et al. Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer101(7), 1623–1631 (2004).
  • Nagata Y, Takayama K, Matsuo Y et al. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int. J. Radiat. Oncol. Biol. Phys.63(5), 1427–1431 (2005).
  • McGarry RC, Papiez L, Williams M, Whitford T, Timmerman RD. Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: Phase I study. Int. J. Radiat. Oncol. Biol. Phys.63(4), 1010–1015 (2005).
  • Baumann P, Nyman J, Lax I et al. Factors important for efficacy of stereotactic body radiotherapy of medically inoperable stage I lung cancer. A retrospective analysis of patients treated in the Nordic countries. Acta. Oncol.45(7), 787–795 (2006).
  • Baumann P, Nyman J, Hoyer M et al. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J. Clin. Oncol.27(20), 3290–3296 (2009).
  • Higgins H, Berger DL. RFA for liver tumors: does it really work? Oncologist11(7), 801–808 (2006).
  • Lencioni R, Crocetti L, Cioni R et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol.9(7), 621–628 (2008).
  • Lencioni R, Crocetti L, Cioni R et al. Radiofrequency ablation of lung malignancies: where do we stand? Cardiovasc. Intervent. Radiol.27(6), 581–590 (2004).
  • Simon CJ, Dupuy DE, DiPetrillo TA et al. Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology243(1), 268–275 (2007).
  • Zhu JC, Yan TD, Morris DL. A systematic review of radiofrequency ablation for lung tumors. Ann. Surg. Oncol.15(6), 1765–1774 (2008).
  • Sutedja TG, Codrington H, Risse EK et al. Autofluorescence bronchoscopy improves staging of radiographically occult lung cancer and has an impact on therapeutic strategy. Chest120(4), 1327–1332 (2001).
  • Kato H, Usuda J, Okunaka T et al. Basic and clinical research on photodynamic therapy at Tokyo Medical University Hospital. Lasers Surg. Med.38(5), 371–375 (2006).
  • Usuda J, Kato H, Okunaka T et al. Photodynamic therapy (PDT) for lung cancers. J. Thorac. Oncol.1(5), 489–493 (2006).
  • Dougherty TJ, Gomer CJ, Henderson BW et al. Photodynamic therapy. J. Natl Cancer Inst.90(12), 889–905 (1998).
  • Usuda J, Ichinose S, Ishizumi T. Management of multiple primary lung cancer in patients with centrally located early cancer lesions. J. Thorac. Oncol.5(1), 62–68 (2010).
  • Furuse K, Fukuoka M, Kato H et al. A prospective Phase II study on photodynamic therapy with photofrin II for centrally located early-stage lung cancer. The Japan Lung Cancer Photodynamic Therapy Study Group. J. Clin. Oncol.11(10), 1852–1857 (1993).
  • Kato H, Furukawa K, Sato M et al. Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer42(1), 103–111 (2003).
  • Fuwa N, Matsumoto A, Kamata M, Kodaira T, Furutani K, Ito Y. External irradiation and intraluminal irradiation using middle-dose-rate iridium in patients with roentgenographically occult lung cancer. Int. J. Radiat. Oncol. Biol. Phys.49(4), 965–971 (2001).
  • Saito M, Yokoyama A, Kurita Y, Uematsu T, Miyao H, Fujimori K. Treatment of roentogenographically occult endobronchial carcinoma with external beam radiotherapy and intraluminal low dose rate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys.34(5), 1029–1035 (1996).
  • MacMahon H, Austin JH, Gamsu G et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology237(2), 395–400 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.