667
Views
16
CrossRef citations to date
0
Altmetric
Review

Recombinant protein-based viral disease diagnostics in veterinary medicine

, , , , &
Pages 731-753 | Published online: 09 Jan 2014

References

  • Balamurugan V, Sen A, Saravanan P, Singh RK. Biotechnology in the production of vaccine or antigen for animal health. J. Ani. Vet. Adv.5(6), 487–495 (2006).
  • Yadav V, Balamurugan V, Bhanuprakash V et al. Expression of Peste des petits ruminants virus nucleocapsid protein in prokaryotic system and its potential use as a diagnostic antigen or immunogen. J. Virol. Methods162, 56–63 (2009).
  • Belak S, Thoren P, LeBlanc N, Viljoen G. Advances in viral disease diagnostic and molecular epidemiological technologies. Exp. Rev. Mol. Diag.9(4), 367–381 (2009).
  • Balamurugan V, Kumar RM, Suryanarayana VVS. Past and present vaccine development strategies for the control of foot-and-mouth disease. Acta Virol.48(4), 201–214 (2004).
  • Van Oers MM, Thomas AA, Moormann RJ, Vlak JM. Secretory pathway limits the enhanced expression of classical swine fever virus E2 glycoprotein in insect cells. J. Biotechnol.86(1), 31–38 (2001).
  • Faber KN, Harder W, Veenhuis M. Review: methylotropic yeast as factories for the production of foreign proteins. Yeast11, 1331–1344 (1995).
  • Cereghino JL, Cregg JM. Heterologous protein expression in methylotrophic yeast Pichia pastoris.FEMS Microbiol. Rev.24, 45–66 (2000).
  • Balamurugan V, Reddy GR, Suryanarayana VVS. Pichia pastoris : a notable heterologous expression system for the production of foreign proteins-vaccines. Ind. J. Biotechnol.6, 175–186 (2007).
  • Sudeep AB, Maurya DT, Mishra AC. Insect cell culture in research: Indian scenario. Ind. J. Med. Res.121, 725–738 (2005).
  • Mason HS, Arntzen CJ. Transgenic plants as vaccine production systems. Trends Biotechnol.13, 388–392 (1995).
  • Analysis, Russel DW. Molecular Cloning – A Laboratory Manual (3rd Edition). Cold Spring Harbor Laboratory Press, NY, USA, 15.1–15.13 (2001).
  • Kost TA, Condreay JP, Jarvis DL. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol.23, 567–575 (2005).
  • Kato T, Kajikawa M, Maenaka K, Park EY. Silkworm expression system as a platform technology in life science. Appl. Microbiol. Biotechnol.85(3), 459–470 (2010).
  • Choudary PV, Kamita SG, Maeda S. Expression of foreign genes in Bombyx mori larvae using baculovirus vectors. Methods Mol. Biol.39, 243–264 (1995).
  • Wu XF, Zhang ZF. Insect expression system. In: Gene Expression Technology. Li YY (Ed.). Scientech Press, Beijing, China 135–146 (2001).
  • Yamao M, Katayama N, Nakazawa H et al. Gene targeting in the silkworm by use of a baculovirus. Genes Dev.13, 511–516 (1999).
  • Tamura T, Thibert C, Royer C et al. Germ line transformation of the silkworm Bombyx mori L. using piggyback transposon-derived vector. Nat. Biotechnol.18, 81–84 (2000).
  • Yamamoto M, Yamao M, Nishiyama H et al. New and highly efficient method for silkworm transgenesis using Autographa californica nucleopolyhedrovirus and piggyBac transposable elements. Biotechnol. Bioeng.88, 849–853 (2004).
  • Yoshimatsu K, Arikawa J, Yoshida R et al. Production of recombinant hantavirus nucleocapsid protein expressed in silkworm larvae and its use as a diagnostic antigen in detecting antibodies in serum from infected rats. Lab. Anim. Sci.45(6), 641–646 (1995).
  • Lu MJ, Li JR, Wang YF, Jin YF, Yu L. Expression of polyprotein of infectious bursal disease virus in Bombyx mori.Sheng. Wu. Gong. Cheng. Xue. Bao.18(4), 472–476 (2002).
  • Rahman MM, Shaila MS, Gopinathan KP. Baculovirus display of fusion protein of Peste des petits ruminants virus and hemagglutination protein of Rinderpest virus and immunogenicity of the displayed proteins in mouse model. Virology317(1), 36–49 (2003).
  • Lu L, Yu L, Kwang J. Baculovirus surface-displayed hemagglutinin of H5N1 influenza virus sustains its authentic cleavage, hemagglutination activity, and antigenicity. Biochem. Biophys. Res. Commun.358, 404–409 (2007).
  • Li Z, Yi Y, Yin X, Zhang Z, Liu J. Expression of foot-and-mouth disease virus capsid proteins in silkworm-baculovirus expression system and its utilization as a subunit vaccine. PLOS ONE3(5), e2273 (2008).
  • Van Oirschot JT, Kaashoeck MJ, Rijsewijk FAM, Stegeman JA. The use of marker vaccine in eradication of herpes viruses. J. Biotechnol.44, 75–81 (1996).
  • Henderson LM. Overview of marker vaccine and differential diagnostic test technology. Biologicals33(4), 203–209 (2005).
  • Uttenthal A, Parida S, Rasmussen TB, Paton DJ, Haas B, Dundon WG. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. Expert Rev. Vaccines9(1), 73–87 (2010).
  • Schmitt B. Differential diagnostic test technology: sensitivity and specificity, an OIE validation perspective. Biologicals33(4), 211–213 (2005).
  • Pasick J. Application of DIVA vaccines and their companion diagnostic tests to foreign animal disease eradication. Anim. Health Res. Rev.5(2), 257–262 (2004).
  • Ni JQ, Zhang CL, Tong GZ, Qiu HJ, Wang YF, Tian ZJ. Expression of truncated gE gene of pseudorabies virus (PRV) and primary application in differential diagnosis of PRV vaccination and infection. Sheng. Wu. Gong. Cheng. Xue. Bao.20(4), 526–531 (2004).
  • Yong T, Huan-Chun C, Shao-Bo X, Ya-Li Q, Qi-Gai H, Yu-Qi R. Development of a latex agglutination test using the major epitope domain of glycoprotein E of pseudorabies virus expressed in E. coli to differentiate between immune responses in pigs naturally infected or vaccinated with pseudorabies virus. Vet. Res. Commun.29(6), 487–497 (2005).
  • Gomez-Sebastian S, Perez-Filgueira DM, Gomez-Casado E et al. DIVA diagnostic of Aujeszky’s disease using an insect-derived virus glycoprotein E. J. Virol. Methods153(1), 29–35 (2008).
  • Qing L, Lv J, Li H et al. The recombinant nonstructural polyprotein NS1 of porcine parvovirus (PPV) as diagnostic antigen in ELISA to differentiate infected from vaccinated pigs. Vet. Res. Commun.30(2), 175–190 (2006).
  • Silberstein E, Kaplan G, Taboga O, Duffy S, Palma E. Foot-and-mouth disease virus-infected but not vaccinated cattle develop antibodies against recombinant 3AB1 non-structural protein. Arch. Virol.142(4), 795–805 (1997).
  • Nanni M, Alegre M, Compaired D, Taboga O, Fondevila N. Novel purification method for recombinant 3AB1 nonstructural protein of foot-and mouth disease virus for use in differentiation between infected and vaccinated animals. J. Vet. Diagn. Invest.17, 248–251 (2005).
  • Bruderer U, Swam H, Haas B et al. Differentiating infection from vaccination in foot-and-mouth-disease: evaluation of an ELISA based on recombinant 3ABC. Vet. Microbiol.101(3), 187–197 (2004).
  • Lu Z, Cao Y, Guo J et al. Development and validation of a 3ABC indirect ELISA for differentiation of foot-and-mouth disease virus infected from vaccinated animals. Vet. Microbiol.125(1–2), 157–169 (2007).
  • O’Donnell VK, Boyle DB, Sproat K et al. Detection of antibodies against foot-and-mouth disease virus using a liquid-phase blocking sandwich ELISA (LPBE) with a bioengineered 3D protein. J. Vet. Diagn. Invest.8, 143–150 (1996).
  • Kamata H, Ohkubo S, Sugiyama M et al. Expression in baculovirus vector system of the nucleocapsid protein gene of rinderpest virus. J. Virol. Methods43(2), 159–165 (1993).
  • Ismail T, Ahmad S, D’Souza-Ault M et al. Cloning and expression of the nucleocapsid gene of virulent Kabete O strain of rinderpest virus in baculovirus: use in differential diagnosis between vaccinated and infected animals. Virology198(1), 138–147 (1994).
  • Barros SC, Cruz B, Luís TM et al. A DIVA system based on the detection of antibodies to non-structural protein 3 (NS3) of bluetongue virus. Vet. Microbiol.137(3–4), 252–259 (2009).
  • Jin S, Issel CJ, Montelaro RC. Serological method using recombinant S2 protein to differentiate equine infectious anemia virus (EIAV)-infected and EIAV-vaccinated horses. Clin. Diagn. Lab. Immunol.11(6), 1120–1129 (2004).
  • Idrissi Bougrine S, Fassi Fihri O, El Harrak M, Fassi Fehri MM. Use of the immunoenzyme test ELISA-NS3 to distinguish horses infected by African horsesickness virus from vaccinated horses. Rev. Sci. Tech.18(3), 618–626 (1999).
  • Li F, Stevenson RA, Crabb BS, Studdert MJ, Hartley CA. Several recombinant capsid proteins of equine rhinitis a virus show potential as diagnostic antigens. Clin. Diagn. Lab. Immunol.12(6), 778–785 (2005).
  • Xie Z, Qin C, Xie L et al. Recombinant protein-based ELISA for detection and differentiation of antibodies against avian reovirus in vaccinated and non-vaccinated chickens. J. Virol. Methods165(1), 108–111 (2010).
  • Suarez DL. Overview of avian influenza DIVA test strategies. Biologicals33(4), 221–226 (2005).
  • Saravanan P, Balamurugan V, Sen A et al. Mixed infection of Peste des petits ruminants and orf on a goat farm in Shahjahanpur, India. Vet. Rec.160(12), 410–412 (2007).
  • Mondal B, Sen A, Chand K et al. Evidence of mixed infection of Peste des petits ruminants virus and bluetongue virus in a flock of goats as confirmed by detection of antigen, antibody and nucleic acid of both the viruses. Trop. Anim. Health Prod.41(8), 1661–1667 (2009).
  • Choi KS, Nah JJ, Choi CU et al. Monoclonal antibody-based competitive ELISA for simultaneous detection of rinderpest virus and Peste des petits ruminants virus antibodies. Vet. Microbiol.96(1), 1–16 (2003).
  • Seth S, Shaila MS. The fusion protein of Peste des petits ruminants virus mediates biological fusion in the absence of hemagglutinin-neuraminidase protein. Virology289(1), 86–94 (2001).
  • Renukaradhya GJ, Suresh KB, Rajasekhar M, Shaila MS. Competitive enzyme-linked immunosorbent assay based on monoclonal antibody and recombinant hemagglutinin for serosurveillance of rinderpest virus. J. Clin. Microbiol.41(3), 943–947 (2003).
  • Latha Priyadharshini M, Balamurugan V, Prabhudas K, Suryanarayana VVS, Reddy GR. Expression of 3AB protein of foot and mouth disease virus in Pichia pastoris.Ind. J. Biotech.6, 329–335 (2007).
  • Balamurugan V, Renji R, Saha SN, Reddy GR, Gopalakrishna S, Suryanarayana VVS. Protective immune response of the capsid precursor polypeptide (P1) of foot and mouth disease virus type ‘O’ produced in Pichia pastoris.Virus Res.92, 141–149 (2003).
  • Balamurugan V, Renji R, Venkatesh G et al. Protective immune response against foot and mouth disease virus challenge in guinea pigs vaccinated with recombinant P1 ployprotein expressed in Pichia pastoris.Arch. Virol.150(5), 967–979 (2005).
  • Renji R, Balamurugan V, Saha SN, Reddy GR, Suryanarayana VVS. Expression of the Capsid precursor polypeptide (P1) of foot and mouth disease virus type ‘O’ in Pichia pastoris.Ind. J. Biotech.2, 533–538 (2003).
  • Fafetine JM, Tijhaar E, Paweska JT et al. Cloning and expression of Rift Valley fever virus nucleocapsid (N) protein and evaluation of a N-protein based indirect ELISA for the detection of specific IgG and IgM antibodies in domestic ruminants. Vet. Microbiol.121(1–2), 29–38 (2007).
  • Paweska JT, van Vuren PJ, Kemp A et al. Recombinant nucleocapsid-based ELISA for detection of IgG antibody to Rift Valley fever virus in African buffalo. Vet. Microbiol.127(1–2), 21–28 (2008).
  • Paweska JT, Jansen van Vuren P, Swanepoel R. Validation of an indirect ELISA based on a recombinant nucleocapsid protein of Rift Valley fever virus for the detection of IgG antibody in humans. J. Virol. Methods146(1–2), 119–124 (2007).
  • Donis RO, Corapi WV, Dubovi EJ. Neutralizing monoclonal antibodies to BVDV bind to the 56K to 58K glycoprotein. J. Gen. Virol.69, 77–86 (1988).
  • Vanderheijden N, De Moerlooze L, Vandenbergh D, Chappuis G, Renard A, Lecomte C. Expression of the bovine viral diarrhea virus Osloss p80 protein: its use as ELISA antigen for cattle serum antibody detection. J. Gen. Virol.74, 1427–1431 (1993).
  • Reddy JR, Kwang J, Okwumabua O et al. Application of recombinant bovine viral diarrhea virus proteins in the diagnosis of bovine viral diarrhea infection in cattle. Vet. Microbiol.57(2–3), 119–133 (1997).
  • Grego E, Uslenghi F, Strasser M et al. Development and application of an enzyme-linked immunosorbent assay for detection of bovine viral diarrhea antibody based on Erns glycoprotein expressed in a baculovirus system. J. Vet. Diagn. Invest.19(1), 21–27 (2007).
  • Chimeno Zoth S, Taboga O. Multiple recombinant ELISA for the detection of bovine viral diarrhea virus antibodies in cattle sera. J. Virol. Methods138(1–2), 99–108 (2006).
  • Marzocca MP, Seki C, Giambiagi SM et al. Truncated E2 of bovine viral diarrhea virus (BVDV) expressed in Drosophila melanogaster cells: a candidate antigen for a BVDV ELISA. J. Virol. Methods144(1–2), 49–56 (2007).
  • Abed Y, St-Laurent G, Zhang H, Jacobs RM, Archambault D. Development of a Western blot assay for detection of bovine immunodeficiency-like virus using capsid and transmembrane envelope proteins expressed from recombinant baculovirus. Clin. Diagn. Lab. Immunol.6(2), 168–172 (1999).
  • Zhang S, Wenzhi X, Charles W, Qi-Min C, Sanjay K, Harish CM. Detection of bovine immunodeficiency virus antibodies in cattle by western blot assay with recombinant gag protein. J. Vet. Diagn. Invest.9, 347–351 (1997).
  • Abed Y, Archambault D. A viral transmembrane recombinant protein-based enzyme-linked immunosorbent assay for the detection of bovine immunodeficiency virus infection. J. Virol. Methods85(1–2), 109–116 (2000).
  • Bhatia S, Sood R, Bhatia AK, Pattnaik B, Pradhan HK. Development of a capsid based competitive inhibition enzyme-linked immunosorbent assay for detection of bovine immunodeficiency virus antibodies in cattle and buffalo serum. J. Virol. Methods148(1–2), 218–225 (2008).
  • Samal SK, Pastey MK, McPhillips T, Carmel DK, Mohanty SB. Reliable confirmation of antibodies to bovine respiratory syncytial virus (BRSV) by enzyme-linked immunosorbent assay using BRSV nucleocapsid protein expressed in insect cells. J. Clin. Microbiol.31, 3147–3152 (1993).
  • Nagesha HS, Gould AR, White JR, Lunt RA, Duch CJ. Expression of the major inner capsid protein of the epizootic haemorrhagic disease virus in baculovirus and potential diagnostic use. Virus. Res.43(2), 163–169 (1996).
  • Luo L, Sabara MI. Production of a recombinant major inner capsid protein for serological detection of epizootic hemorrhagic disease virus. Clin. Diagn. Lab. Immunol.12(8), 904–909 (2005).
  • Nara Pereira EM, Nishida T, Tokunaga R, Iwata H, Inoue T. Cloning and expression of the M5 RNA segment encoding outer capsid VP5 of epizootic hemorrhagic disease virus Japan serotype 2, Ibaraki virus. J. Vet. Med. Sci.62(3), 301–304 (2000).
  • Yamakawa M, Furuuchi S. Expression and antigenic characterization of the major core protein VP7 of Chuzan virus, a member of the Palyam serogroup orbiviruses. Vet. Microbiol.83(4), 333–341 (2001).
  • Han MG, Wang Q, Smiley JR, Chang KO, Saif LJ. Self-assembly of the recombinant capsid protein of a bovine norovirus (BoNV) into virus-like particles and evaluation of cross-reactivity of BoNV with human noroviruses. J. Clin. Microbiol.43(2), 778–785 (2005).
  • Eaton BT, Gould AR, Hyatt AD, Coupar BE, Martyn JC, White JR. A bluetongue serogroup-reactive epitope in the amino terminal half of the major core protein VP7 is accessible on the surface of bluetongue virus particles. Virology180(2), 687–696 (1991).
  • Pathak KB, Biswas SK, Tembhurne PA et al. Prokaryotic expression of truncated VP7 of bluetongue virus (BTV) and reactivity of the purified recombinant protein with all BTV type-specific sera. J. Virol. Methods152(1–2), 6–12 (2008).
  • Martyn JC, Gould AR, Eaton BT. High level expression of the major core protein VP7 and the non-structural protein NS3 of bluetongue virus in yeast: use of expressed VP7 as a diagnostic, group-reactive antigen in a blocking ELISA. Virus Res.18(2–3), 165–178 (1991).
  • French TJ, Marshall JJ, Roy P. Assembly of double-shelled, viruslike particles of bluetongue virus by the simultaneous expression of four structural proteins. J. Virol.64(12), 5695–5700 (1990).
  • Oldfield S, Adachi A, Urakawa T, Hirasawa T, Roy P. Purification and characterization of the major group-specific core antigen VP7 of bluetongue virus synthesized by a recombinant baculovirus. J. Gen. Virol.71, 2649–2656 (1990).
  • Luo L, Sabara MI. Production, characterization and assay application of a purified, baculovirus-expressed, serogroup specific bluetongue virus antigen. Transbound. Emerg. Dis.55(3–4), 175–182 (2008).
  • Cloete M, du Plessis DH, van Dijk AA, Huismans H, Viljoen GJ. Vaccinia virus expression of the VP7 protein of South African bluetongue virus serotype 4 and its use as an antigen in a capture ELISA. Arch. Virol.135(3–4), 405–418 (1994).
  • Afshar A, Eaton BT, Wright PF et al. Competitive ELISA for serodiagnosis of bluetongue: evaluation of group-specific monoclonal antibodies and expressed VP7 antigen. J. Vet. Diagn. Invest.4(3), 231–237 (1992).
  • Yang J, Hua Q, Chen H et al. Development and evaluation of an immunochromatographic strip for the detection of serum antibodies against bluetongue virus. J. Virol. Methods.63(1), 68–73 (2010).
  • Afshar A, Thomas FC, Wright PF, Shapiro JL, Anderson J. Comparison of competitive ELISA, indirect ELISA and standard AGID tests for detecting blue-tongue virus antibodies in cattle and sheep. Vet. Rec.124(6), 136–141 (1989).
  • Luo L, Marta I, Sabara. Production of a recombinant major inner capsid protein for serological detection of epizootic hemorrhagic disease virus. Clin. Diag. Lab. Immunol.12(8), 904–909 (2005).
  • Ismail TM, Yamanaka MK, Saliki JT, el-Kholy A, Mebus C, Yilma T. Cloning and expression of the nucleoprotein of Peste des petits ruminants virus in baculovirus for use in serological diagnosis. Virology208(2), 776–778 (1995).
  • Choi KS, Nah JJ, Ko YJ, Kang SY, Jo NI. Rapid competitive enzyme-linked immunosorbent assay for detection of antibodies to Peste des petits ruminants virus. Clin. Diagn. Lab. Immunol.12(4), 542–547 (2005).
  • Raj GD, Rajanathan TM, Kumar CS, Ramathilagam G, Hiremath G, Shaila MS. Detection of Peste des petits ruminants virus antigen using immunofiltration and antigen-competition ELISA methods. Vet. Microbiol.129(3–4), 246–251 (2008).
  • Balamurugan V, Sen A, Saravanan P et al. Development and characterization of a stable vero cell line constitutively expressing Peste des petits ruminants virus (PPRV) hemagglutinin protein and its potential use as antigen in enzyme-linked immunosorbent assay for serosurveillance of PPRV. Clin. Vaccine Immunol.13(12), 1367–1372 (2006).
  • Qiang Z, Wei-Min M, Guo-Hua W et al. Prokaryotic expression of structural protein P32 gene of goat pox virus. J. Gan. Agril. Univ.42(2), 5–8 (2007).
  • Bowden TR, Coupar BE, Babiuk SL et al. Detection of antibodies specific for sheeppox and goatpox viruses using recombinant capripoxvirus antigens in an indirect enzyme-linked immunosorbent assay. J. Virol. Methods161(1), 19–29 (2009).
  • Bhanot V, Balamurugan V, Bhanuprakash V et al. Expression of P32 protein of goatpox virus in Pichia pastoris and its potential utility as diagnostic antigen in ELISA. J. Virol. methods162(1-2), 251–257 (2009).
  • Chen YX, Cai XP, Jing ZZ et al. Construction, expression and immunogenicity of eukaryotic vectors based on goat pox virus P32 gene. Bing. Du. Xue. Bao.24(2), 133–137 (2008).
  • Carn VM, Kitching RP, Hammond JM, Chand P. Use of a recombinant antigen in an indirect ELISA for detecting bovine antibody to capripoxvirus. J. Virol. Methods49(3), 285–294 (1994).
  • Heine HG, Stevens MP, Foord AJ, Boyle DB. A capripoxvirus detection PCR and antibody ELISA based on the major antigen P32, the homolog of the vaccinia virus H3L gene. J. Immunol. Methods227(1–2), 187–196 (1999).
  • Muinamia K, Binepal SY, Machuka J, Makumi J, Soi R. A latex agglutination test for capripoxvirus. J. Trop. Microbiol. Biotech.3(2), 36–43 (2007).
  • Zanoni RG, Nauta IM, Pauli U, Peterhans E. Expression in Escherichia coli and sequencing of the coding region for the capsid protein of Dutch maedi-visna virus strain ZZV 1050: application of recombinant protein in enzyme-linked immunosorbent assay for the detection of caprine and ovine lentiviruses. J. Clin. Microbiol.29(7), 1290–1294 (1991).
  • Birkett AJ, Yélamos B, Rodríguez-Crespo I, Gavilanes F, Peterson DL. Cloning, expression, purification, and characterization of the major core protein (p26) from equine infectious anemia virus. Biochim. Biophys. Acta.1339(1), 62–72 (1997).
  • Archambault D, Wang ZM, Lacal JC et al. Development of an enzyme-linked immunosorbent assay for equine infectious anemia virus detection using recombinant Pr55gag. J. Clin. Microbiol.27(6), 1167–1173 (1989).
  • Kong XG, Pang H, Sugiura T et al. Application of equine infectious anemia virus core proteins produced in a baculovirus expression system to serological diagnosis. Microbiol. Immunol.41(12), 975–980 (1997).
  • Alvarez I, Gutierrez G, Vissani A, Rodriguez S, Barrandeguy M, Trono K. Standardization and validation of an agar gel immunodiffusion test for the diagnosis of equine infectious anemia using a recombinant p26 antigen. Vet. Microbiol.121(3–4), 344–351 (2007).
  • Piza AS, Pereira AR, Terreran MT et al. Serodiagnosis of equine infectious anemia by agar gel immunodiffusion and ELISA using a recombinant p26 viral protein expressed in Escherichia coli as antigen. Prev. Vet. Med.78(3–4), 239–245 (2007).
  • Alvarez I, Gutierrez G, Ostlund E, Barrandeguy M, Trono K. Western blot assay using recombinant p26 antigen for detection of equine infectious anemia virus-specific antibodies. Clin. Vaccine Immunol.14(12), 1646–1648 (2007).
  • Celia J, Archambault D. Importance of M-protein C terminus as substrate antigen for serodetection of equine arteritis virus infection. Clin. Diagn. Lab. Immunol.9(3), 698–703 (2002).
  • Chirnside ED, Francis PM, de Vries AA, Sinclair R, Mumford JA. Development and evaluation of an ELISA using recombinant fusion protein to detect the presence of host antibody to equine arteritis virus. J. Virol. Methods.54(1), 1–13 (1995).
  • Nugent J, Sinclair R, deVries AA et al. Development and evaluation of ELISA procedures to detect antibodies against the major envelope protein (G (L)) of equine arteritis virus. J. Virol. Methods.90(2), 167–183 (2000).
  • Hedges JF, Balasuriya UB, Ahmad S et al. Detection of antibodies to equine arteritis virus by enzyme linked immunosorbant assays utilizing G (L), M and N proteins expressed from recombinant baculoviruses. J. Virol. Methods.76(1–2), 127–137 (1998).
  • Das D, Nagata LP, Suresh MR. Immunological evaluation of Escherichia coli expressed E2 protein of Western equine encephalitis virus. Virus Res.128(1–2), 26–33 (2007).
  • Hu WG, Chau D, Wong C, Masri SA, Fulton RE, Nagata LP. Cloning, expression and purification of envelope proteins E1 and E2 of western equine encephalitis virus and potential use of them as antigens in immunoassays. Vet. Microbiol.128(3–4), 374–379 (2008).
  • Passler S, Pfeffer M. Detection of antibodies to alphaviruses and discrimination between antibodies to eastern and western equine encephalitis viruses in rabbit sera using a recombinant antigen and virus-specific monoclonal antibodies. J. Vet. Med. B Infect. Dis. Vet. Public Health50(6), 265–269 (2003).
  • Chuma T, Le Blois H, Sánchez-Vizcaíno JM, Diaz-Laviada M, Roy P. Expression of the major core antigen VP7 of African horse sickness virus by a recombinant baculovirus and its use as a group-specific diagnostic reagent. J. Gen. Virol.73, 925–931 (1992).
  • Bremer CW, du Plessis DH, van Dijk AA. Baculovirus expression of non-structural protein NS2 and core protein VP7 of African horsesickness virus serotype 3 and their use as antigens in an indirect ELISA. J. Virol. Methods.48(2–3), 245–256 (1994).
  • Wade-Evans AM, Woolhouse T, O’Hara R, Hamblin C. The use of African horse sickness virus VP7 antigen, synthesised in bacteria, and anti-VP7 monoclonal antibodies in a competitive ELISA. J. Virol. Methods45(2), 179–188 (1993).
  • Kweon CH, Kwon BJ, Ko YJ, Kenichi S. Development of competitive ELISA for serodiagnosis on African horsesickness virus using baculovirus expressed VP7 and monoclonal antibody. J. Virol. Methods113(1), 13–18 (2003).
  • Maree S, Paweska JT. Preparation of recombinant African horse sickness virus VP7 antigen via a simple method and validation of a VP7-based indirect ELISA for the detection of group-specific IgG antibodies in horse sera. J. Virol. Methods125(1), 55–65 (2005).
  • Sinclair R, Matihew MB, Chirnside ED, Jennifer AM. detection of antibodies against equine herpesvirus types 1 and 4 by using recombinant protein derived from an immunodominant region of glycoprotein B. J. Clin. Microbiol.31(2), 265–271 (1993).
  • Wang LF, Gould AR, Selleck PW. Expression of equine morbillivirus (EMV) matrix and fusion proteins and their evaluation as diagnostic reagents. Arch.Virol.142(11), 2269–2279 (1997).
  • Rosati S, Profiti M, Lorenzetti R et al. Development of recombinant capsid antigen/transmembrane epitope fusion proteins for serological diagnosis of animal lentivirus infections. J. Virol. Methods.121(1), 73–78 (2004).
  • Alcaraz C, Rodriguez F, Oviedo JM et al. Highly specific confirmatory western blot test for African swine fever virus antibody detection using the recombinant virus protein p54. J. Virol. Methods52(1–2), 111–119 (1995).
  • Gallardo C, Blanco E, Rodríguez JM, Carrascosa AL, Sanchez-Vizcaino JM. Antigenic properties and diagnostic potential of African swine fever virus protein pp62 expressed in insect cells. J. Clin. Microbiol.44(3), 950–956 (2006).
  • Barderas MG, Wigdorovitz A, Merelo F et al. Serodiagnosis of African swine fever using the recombinant protein p30 expressed in insect larvae. J. Virol. Methods89(1–2), 129–136 (2000).
  • Perez-Filgueira DM, González-Camacho F, Gallardo C et al. Optimization and validation of recombinant serological tests for African swine fever diagnosis based on detection of the p30 protein produced in Trichoplusia ni larvae. J. Clin. Microbiol.44(9), 3114–3121 (2006).
  • Oviedo JM, Rodríguez F, Gómez-Puertas P et al. High level expression of the major antigenic African swine fever virus proteins p54 and p30 in baculovirus and their potential use as diagnostic reagents. J. Virol. Methods64(1), 27–35 (1997).
  • Gallardo C, Reis AL, Kalema-Zikusoka G et al. Recombinant antigen targets for serodiagnosis of African swine fever. Clin. Vaccine Immunol.16(7), 1012–1020 (2009).
  • Clavijo A, Lin M, Riva J, Zhou EM. Application of competitive enzyme-linked immunosorbent assay for the serologic diagnosis of classical swine fever virus infection. J. Vet. Diagn. Invest.13(4), 357–360 (2001).
  • Han XQ, Liu XT, Zhang Y, Xie QG, Tian B. Study on the expression of E2 gene of classical swine fever virus in Pichia pastoris and the immunological activity of its expression product. Sheng. Wu. Gong. Cheng. Xue. Bao.18(2), 208–211 (2002).
  • Colijn EO, Bloemraad M, Wensvoort G. An improved ELISA for the detection of serum antibodies directed against classical swine fever virus. Vet. Microbiol.59(1), 15–25 (1997).
  • Lin M, Trottier E, Mallory M. Enzyme-linked immunosorbent assay based on a chimeric antigen bearing antigenic regions of structural proteins Erns and E2 for serodiagnosis of classical swine fever virus infection. Clin. Diagn. Lab. Immunol.12(7), 877–881 (2005).
  • Denac H, Moser C, Tratschin JD, Hofmann MA. An indirect ELISA for the detection of antibodies against porcine reproductive and respiratory syndrome virus using recombinant nucleocapsid protein as antigen. J. Virol. Methods65(2), 169–181 (1997).
  • Dea S, Wilson L, Therrien D, Cornaglia E. Competitive ELISA for detection of antibodies to porcine reproductive and respiratory syndrome virus using recombinant E. coli -expressed nucleocapsid protein as antigen. J. Virol. Methods87(1–2), 109–122 (2000).
  • Seuberlich T, Tratschin JD, Thür B, Hofmann MA. Nucleocapsid protein-based enzyme-linked immunosorbent assay for detection and differentiation of antibodies against European and North American porcine reproductive and respiratory syndrome virus. Clin. Diagn. Lab. Immunol.9(6), 1183–1191 (2002).
  • Ferrin NH, Fang Y, Johnson CR et al. Validation of a blocking enzyme-linked immunosorbent assay for detection of antibodies against porcine reproductive and respiratory syndrome virus. Clin. Diagn. Lab. Immunol.11(3), 503–514 (2004).
  • Plagemann PG. Peptide ELISA for measuring antibodies to N-protein of porcine reproductive and respiratory syndrome virus. J. Virol. Methods134(1–2), 99–118 (2006).
  • Chu JQ, Hu XM, Kim MC, Park CS, Jun MH. Development and validation of a recombinant nucleocapsid protein-based ELISA for detection of the antibody to porcine reproductive and respiratory syndrome virus. J. Microbiol.47(5), 582–588 (2009).
  • Ro LH, Lai SS, Hwang WL et al. Cloning and expression of an antigenic domain of glycoprotein gE of pseudorabies virus in Escherichia coli and its use as antigen in diagnostic assays. Am. J. Vet. Res.56(5), 555–561 (1995).
  • Gut M, Jacobs L, Tyborowska J, Szewczyk B, Bienkowska-Szewczyk K. A highly specific and sensitive competitive enzyme-linked immunosorbent assay (ELISA) based on baculovirus expressed pseudorabies virus glycoprotein gE and gI complex. Vet. Microbiol.69(4), 239–249 (1999).
  • Kimman TG, de Leeuw O, Kochan G et al. An indirect double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) using baculovirus-expressed antigen for the detection of antibodies to glycoprotein E of pseudorabies virus and comparison of the method with blocking ELISAs. Clin. Diagn. Lab. Immunol.3(2), 167–174 (1996).
  • Ao JQ, Wang JW, Chen XH, Wang XZ, Long QX. Expression of pseudorabies virus gE epitopes in Pichia pastoris and its utilization in an indirect PRV gE-ELISA. J. Virol. Methods114(2), 145–150 (2003).
  • Madsen ES, Madsen KG, Nielsen J, Jensen MH, Lei JC, Have P. Detection of antibodies against porcine parvovirus nonstructural protein NS1 may distinguish between vaccinated and infected pigs. Vet. Microbiol.54(1), 1–16 (1997).
  • Sestak K, Zhou Z, Shoup DI, Saif LJ. Evaluation of the baculovirus-expressed S glycoprotein of transmissible gastroenteritis virus (TGEV) as antigen in a competition ELISA to differentiate porcine respiratory coronavirus from TGEV antibodies in pigs. J. Vet. Diagn. Invest.11(3), 205–214 (1999).
  • Lopez L, Venteo A, García M et al. Antigen-capture blocking enzyme-linked immunosorbent assay based on a baculovirus recombinant antigen to differentiate transmissible gastroenteritis virus from Porcine respiratory coronavirus antibodies. J. Vet. Diagn. Invest.21(5), 598–608 (2009).
  • Ko YJ, Jeoung HY, Lee HS et al. A recombinant protein-based ELISA for detecting antibodies to foot-and-mouth disease virus serotype Asia 1. J. Virol. Methods159(1), 112–118 (2009).
  • Liu C, Ihara T, Nunoya T, Ueda S. Development of an ELISA based on the baculovirus-expressed capsid protein of porcine circovirus type 2 as antigen. J. Vet. Med. Sci.66(3), 237–242 (2004).
  • Cho HS, Kim TJ, Lee JI, Park NY. Serodiagnostic comparison of enzyme-linked immunosorbent assay and surface plasmon resonance for the detection of antibody to porcine circovirus type 2. Can. J. Vet. Res.70(4), 263–268 (2006).
  • Wu PC, Chien MS, Tseng YY et al. Expression of the porcine circovirus type 2 capsid protein subunits and application to an indirect ELISA. J. Biotechnol.133(1), 58–64 (2008).
  • Marcekova Z, Psikal I, Kosinova E, Benada O, Sebo P, Bumba L. Heterologous expression of full-length capsid protein of porcine circovirus 2 in Escherichia coli and its potential use for detection of antibodies. J. Virol. Methods162(1–2), 133–141 (2009).
  • Racine S, Kheyar A, Gagnon CA, Charbonneau B, Dea S. Eucaryotic expression of the nucleocapsid protein gene of porcine circovirus type 2 and use of the protein in an indirect immunofluorescence assay for serological diagnosis of postweaning multisystemic wasting syndrome in pigs. Clin. Diagn. Lab. Immunol.11(4), 736–741 (2004).
  • Ko YJ, Choi KS, Nah JJ et al. Noninfectious virus-like particle antigen for detection of swine vesicular disease virus antibodies in pigs by enzyme-linked immunosorbent assay. Clin. Diagn. Lab. Immunol.12(8), 922–929 (2005).
  • Shukla J, Bhargava R, Dash PK, Parida M, Tripathi N, Rao PV. Cloning and expression of domain III of the envelope gene of Japanese encephalitis virus: evaluation for early clinical diagnosis by IgM ELISA. J. Virol. Methods158(1–2), 165–170 (2009).
  • Juozapaitis M, Serva A, Zvirbliene A et al. Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae.Virus Res.124(1–2), 95–102 (2007).
  • Chen JM, Yu M, Morrissy C et al. A comparative indirect ELISA for the detection of henipavirus antibodies based on a recombinant nucleocapsid protein expressed in Escherichia coli.J. Virol. Methods136(1–2), 273–276 (2006).
  • Yu F, Khairullah NS, Inoue S et al. Serodiagnosis using recombinant nipah virus nucleocapsid protein expressed in Escherichia coli.J. Clin. Microbiol.44(9), 3134–3138 (2006).
  • Eshaghi M, Tan WS, Mohidin TB, Yusoff K. Nipah virus glycoprotein: production in baculovirus and application in diagnosis. Virus Res.106(1), 71–76 (2004).
  • Wang XJ, Hu S, Ge JY, Wang QH, Qin LT, Bu ZG. Study of fusion protein and attachment glycoprotein of Nipah virus expressed in recombinant baculovirus. Sheng. Wu. Gong. Cheng. Xue. Bao.22(3), 418–424 (2006).
  • Eshaghi M, Tan WS, Ong ST, Yusoff K. Purification and characterization of Nipah virus nucleocapsid protein produced in insect cells. J. Clin. Microbiol.43(7), 3172–3177 (2005).
  • Subramanian SK, Tey BT, Hamid M, Tan WS. Production of the matrix protein of Nipah virus in Escherichia coli : virus-like particles and possible application for diagnosis. J. Virol. Methods162(1–2), 179–183 (2009).
  • von Messling V, Harder TC, Moennig V, Rautenberg P, Nolte I, Haas L. Rapid and sensitive detection of immunoglobulin M (IgM) and IgG antibodies against canine distemper virus by a new recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay. J. Clin. Microbiol.37(4), 1049–1056 (1999).
  • Latha D, Geetha M, Ramadass P, Narayanan RB. Evaluation of ELISA based on the conserved and functional middle region of nucleocapsid protein to detect distemper infection in dogs. Vet. Microbiol.120(3–4), 251–260 (2007).
  • Barben G, Stettler M, Jaggy A, Vandevelde M, Zurbriggen A. Detection of IgM antibodies against a recombinant nucleocapsid protein of canine distemper virus in dog sera using a dot-blot assay. Zentralbl Veterinarmed A.46(2), 115–121 (1999).
  • Latha D, Geetha M, Ramadass P, Narayanan RB. Development of recombinant nucleocapsid protein based IgM-ELISA for the early detection of distemper infection in dogs. Vet. Immunol. Immunopathol.119(3–4), 278–286 (2007).
  • Gupta PK, Sharma S, Walunj SS et al. Immunogenic and antigenic properties of recombinant soluble glycoprotein of rabies virus. Vet. Microbiol.108(3–4), 207–214 (2005).
  • Katayama S, Yamanaka M, Ota S, Shimizu Y. A new quantitative method for rabies virus by detection of nucleoprotein in virion using ELISA. J. Vet. Med. Sci.61(4), 411–416 (1999).
  • He Y, Gao D, Zhang M. Expression of the nucleoprotein gene of rabies virus for use as a diagnostic reagent. J. Virol. Methods138(1–2), 147–151 (2006).
  • Bassi EJ, Vernal J, Zanluca C, Terenzi H, Zanetti CR. Expression, purification and immunodetection of a recombinant fragment (residues 179–281) of the G protein from rabies virus ERA strain. Protein Expr. Purif.59(2), 309–313 (2008).
  • Khawplod P, Inoue K, Shoji Y et al. A novel rapid fluorescent focus inhibition test for rabies virus using a recombinant rabies virus visualizing a green fluorescent protein. J. Virol. Methods125(1), 35–40 (2005).
  • Zhang S, Liu Y, Zhang F, Hu R. Competitive ELISA using a rabies glycoprotein-transformed cell line to semi-quantify rabies neutralizing-related antibodies in dogs. Vaccine27(15), 2108–2113 (2009).
  • Hagood LT, Kelly TF, Wright JC, Hoerr FJ. Evaluation of chicken infectious anemia virus and associated risk factors with disease and production losses in broilers. Avian Dis.44, 803–808 (2000).
  • Pallister J, Fahey KJ, Sheppard M. Cloning and sequencing of the chicken anaemia virus (CAV) ORF -3 gene, and the development of an ELISA for the detection of serum antibody to CAV. Vet. Microbiol.39(1–2), 167–178 (1994).
  • Nogueira-Dantas EO, Ferreira AJ, Astolfi-Ferreira CS, Brentano L. Cloning and expression of chicken anemia virus VP3 protein in Escherichia coli.Comp. Immunol. Microbiol. Infec. Dis.30(3), 133–142 (2007).
  • Iwata N, Fujino M, Tuchiya K, Iwata A, Otaki Y, Ueda S. Development of an enzyme-linked immunosorbent assay using recombinant chicken anemia virus proteins expressed in a baculovirus vector system. J. Vet. Med. Sci.60(2), 175–180 (1998).
  • Jackwood DJ, Henderson KS, Jackwood RJ. Enzyme-linked immunosorbent assay-based detection of antibodies to antigenic subtypes of infectious bursal disease viruses of chickens. Clin. Diagn. Lab. Immunol.3(4), 456–463 (1996).
  • Dybing JK, Jackwood DJ. Antigenic and immunogenic properties of baculovirus-expressed infectious bursal disease viral proteins. Avian Dis.42(1), 80–91 (1998).
  • Dey S, Upadhyay C, Madhan Mohan C, Kataria JM, Vakharia VN. Formation of subviral particles of the capsid protein VP2 of infectious bursal disease virus and its application in serological diagnosis. J. Virol. Methods157(1), 84–89 (2009).
  • Saravanan P, Kumar S, Kataria JM, Rasool TJ. Detection of infectious bursal disease virus by ELISA using an antipeptide antibody raised against VP3 region. Acta Virol.48, 39–45 (2004).
  • Saravanan P, Kumar S, Kataria JM. Use of multiple antigenic peptides related to antigenic determinants of infectious bursal disease virus (IBDV) for detection of anti-IBDV-specific antibody in ELISA-quantitative comparison with native antigen for their use in serodiagnosis. J. Immunol. Methods.293, 61–70 (2004).
  • Hosseini SD, Omar AR, Aini I, Ali AM. Diagnostic potential of recombinant protein of hexahistidine tag and infectious bursal disease virus VPX expressed in Escherichia coli.Acta Vet. Hungarica55(3), 405–415 (2007).
  • Martínez-Torrecuadrada JL, Lázaro B, Rodriguez JF, Casal JI. Antigenic properties and diagnostic potential of baculovirus-expressed infectious bursal disease virus proteins VPX and VP3. Clin. Diagn. Lab. Immunol.7(4), 645–651 (2000).
  • Wang MY, Hu HL, Suen SY, Chiu FY, Shien JH, Lai SY. Development of an enzyme-linked immunosorbent assay for detecting infectious bursal disease virus (IBDV) infection based on the VP3 structural protein. Vet. Microbiol.131(3–4), 229–236 (2008).
  • Wei L, Chee LL, Wei T et al. The VP1 protein of avian encephalomyelitis virus is a major host-protective immunogen that serves as diagnostic potential. J. Virol. Methods149(1), 56–62 (2008).
  • Ma X, Song M, Yu K, Liao M, Xin C. Expression of VP1 gene and ELISA detection of antibodies against duck hepatitis virus. Wei. Sheng. Wu. Xue. Bao.48(8), 1110–1114 (2008).
  • Pan H, Cao R, Liu L et al. Prokaryotic expression of N-terminal antigenic domain of duck plague virus gB protein and the establishment of putative indirect ELISA assay. Wei. Sheng. Wu. Xue. Bao.48(1), 98–102 (2008).
  • Jia R, Cheng A, Wang M et al. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein. J. Virol. Methods161(1), 38–43 (2009).
  • Daum I, Finsterbusch T, Härtle S et al. Cloning and expression of a truncated pigeon circovirus capsid protein suitable for antibody detection in infected pigeons. Avian Pathol.38(2), 135–141 (1009).
  • Ndifuna A, Waters AK, Zhou M, Collisson EW. Recombinant nucleocapsid protein is potentially an inexpensive, effective serodiagnostic reagent for infectious bronchitis virus. J. Virol. Methods70(1), 37–44 (1998).
  • Chen H, Coote B, Attree S, Hiscox JA. Evaluation of a nucleoprotein-based enzyme-linked immunosorbent assay for the detection of antibodies against infectious bronchitis virus. Avian Pathol.32(5), 519–526 (2003).
  • Gibertoni AM, Montassier Mde F, Sena JA, Givisiez PE, Furuyama CR, Montassier HJ. Development and application of a Saccharomyces cerevisiae -expressed nucleocapsid protein-based enzyme-linked immunosorbent assay for detection of antibodies against infectious bronchitis virus. J. Clin. Microbiol.43(4), 1982–1984 (2005).
  • Lugovskaya NN, Scherbakov AV, Yakovleva AS et al. Detection of antibodies to avian infectious bronchitis virus by a recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay. J. Virol. Methods135(2), 292–296 (2006).
  • Breslin JJ, Smith LG, Guy JS. Baculovirus expression of turkey coronavirus nucleocapsid protein. Avian Dis.45(1), 136–143 (2001).
  • Loa CC, Lin TL, Wu CC, Bryan TA, Hooper T, Schrader D. Expression and purification of turkey coronavirus nucleocapsid protein in Escherichia coli.J. Virol. Methods116(2), 161–167 (2004).
  • Guy JS, Smith LG, Breslin JJ, Pakpinyo S. Development of a competitive enzyme-linked immunosorbent assay for detection of turkey coronavirus antibodies. Avian Dis.46(2), 334–341 (2002).
  • Gomaa MH, Yoo D, Ojkic D, Barta JR. Seroprevalence of turkey coronavirus in North American turkeys determined by a newly developed enzyme-linked immunosorbent assay based on recombinant antigen. Clin. Vaccine Immunol.15(12), 1839–1844 (2008).
  • Gomaa MH, Yoo D, Ojkic D, Barta JR. Use of recombinant S1 spike polypeptide to develop a TCoV-specific antibody ELISA. Vet. Microbiol.138(3–4), 281–288 (2009).
  • Errington W, Steward M, Emmerson PT. A diagnostic immunoassay for Newcastle disease virus based on the nucleocapsid protein expressed by a recombinant baculovirus. J. Virol. Methods55(3), 357–365 (1995).
  • Mohan CM, Dey S, Rai A, Kataria JM. Recombinant haemagglutinin neuraminidase antigen-based single serum dilution ELISA for rapid serological profiling of Newcastle disease virus. J. Virol. Methods138(1–2), 117–122 (2006).
  • Nagy E, Derbyshire JB, Dobos P, Krell PJ. Cloning and expression of NDV hemagglutinin–neuraminidase cDNA in a baculovirus expression vector system. Virology176(2), 426–438 (1990).
  • Chimeno Zoth S, Gómez E, Carballeda JM, Taboga O, Carrillo E, Berinstein A. Potential use of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus expressed in Rachiplusia nu larvae as an immunogen for chickens. Clin. Vaccine Immunol.16(5), 775–778 (2009).
  • Heckert RA, Nagy E. Evaluation of the hemagglutination-inhibition assay using a baculovirus-expressed hemagglutinin–neuraminidase protein for detection of Newcastle disease virus antibodies. J. Vet. Diagn. Invest.11(1), 99–102 (1999).
  • Wu R, Hu S, Xiao Y, Li Z, Shi D, Bi D. Development of indirect enzyme-linked immunosorbent assay with nucleoprotein as antigen for detection and quantification of antibodies against avian influenza virus. Vet. Res. Commun.31(5), 631–641 (2007).
  • Jin M, Wang G, Zhang R et al. Development of enzyme-linked immunosorbent assay with nucleoprotein as antigen for detection of antibodies to avian influenza virus. Avian Dis.48(4), 870–878 (2004).
  • Starick E, Werner O, Schirrmeier H, Köllner B, Riebe R, Mundt E. Establishment of a competitive ELISA (cELISA) system for the detection of influenza A virus nucleoprotein antibodies and its application to field sera from different species. J. Vet. Med. B Infect. Dis. Vet. Public Health53(8), 370–375 (2006).
  • Shien JH, Fu LF, Wu JR, Cheng MC, Shieh HK, Chang PC. Development of blocking ELISA for detection of antibodies against avian influenza virus of the H7 subtype. J. Microbiol. Immunol. Infect.41(5), 369–376 (2008).
  • Luo Q, Huang H, Zou W et al. An indirect sandwich ELISA for the detection of avian influenza H5 subtype viruses using anti-hemagglutinin protein monoclonal antibody. Vet. Microbiol.137(1–2), 24–30 (2009).
  • Johne R, Raue R, Grund C, Kaleta EF, Müller H. Recombinant expression of a truncated capsid protein of beak and feather disease virus and its application in serological tests. Avian Pathol.33(3), 328–336 (2004).
  • Stewart ME, Bonne N, Shearer P, Khalesi B, Sharp M, Raidal S. Baculovirus expression of beak and feather disease virus (BFDV) capsid protein capable of self-assembly and haemagglutination. J. Virol. Methods141(2), 181–187 (2007).
  • Shearer PL, Sharp M, Bonne N, Clark P, Raidal SR. A blocking ELISA for the detection of antibodies to psittacine beak and feather disease virus (BFDV). J. Virol. Methods158(1–2), 136–140 (2009).
  • Goyal SM, Chiang SJ, Dar AM et al. Isolation of avian pneumovirus from an outbreak of respiratory illness in Minnesota turkeys. J. Vet. Diagn. Invest.12, 166–168 (2000).
  • Shin HJ, Rajashekara G, Jirjis FF et al. Specific detection of avian pneumovirus (APV) U.S. isolates by RT-PCR. Arch. Virol.145, 1239–1246 (2000).
  • Chiang SJ, Dar A, Goyal SM, Nagaraja KV, Halvorson DA, Kapur V. Seroprevalence of avian pneumovirus in Minnesota turkeys. J. Vet. Diagn. Invest.12, 381–384 (2000).
  • Gulati BR, Munir S, Patnayak DP, Goyal SM, Kapur V. Detection of antibodies to U.S. isolates of avian pneumovirus by a recombinant nucleocapsid protein-based sandwich enzyme-linked immunosorbent assay. J. Clin. Microbiol.39(8), 2967–2970 (2001).
  • Maherchandani S, Patnayak DP, Munoz-Zanzi CA, Lauer D, Goyal SM. Evaluation of five different antigens in enzyme-linked immunosorbent assay for the detection of avian pneumovirus antibodies. J. Vet. Diagn. Invest.17(1), 16–22 (2005).
  • Luo L, Sabara MI, Li Y. Expression of recombinant small hydrophobic protein for serospecific detection of avian pneumovirus subgroup C. Clin. Diagn. Lab. Immunol.12(1), 187–191 (2005).
  • Gulati BR, Cameron KT, Seal BS, Goyal SM, Halvorson DA, Njenga MK. Development of a highly sensitive and specific enzyme-linked immunosorbent assay based on recombinant matrix protein for detection of avian pneumovirus antibodies. J. Clin. Microbiol.38(11), 4010–4014 (2000).
  • Jang HK, Ono M, Kim TJ et al. Marek’s disease virus serotype 2 glycoprotein I gene: nucleotide sequence and expression by a recombinant baculovirus. J. Vet. Med. Sci.58(11), 1057–1066 (1996).
  • Jang HK, Niikura M, Song CS, Mikami T. Characterization and expression of the Marek’s disease virus serotype 2 glycoprotein E in recombinant baculovirus-infected cells: initial analysis of its DNA sequence and antigenic properties. Virus Res.48(2), 111–123 (1997).
  • Chang PC, Chen KT, Shien JH, Shieh HK. Expression of infectious laryngotracheitis virus glycoproteins in Escherichia coli and their application in enzyme-linked immunosorbent assay. Avian Dis.46(3), 570–580 (2002).
  • Briese T, Hatalski CG, Stefanie Kliche, Park Y-S, Lipkin WI. Enzyme-linked immunosorbent assay for detecting antibodies to borna disease virus-specific proteins. J. Clin. Microbiol.33(2), 348–351 (1995).
  • Clemens DL, James BW, Mori S, Bradley DB, Stanley FH, Marshall EB. Expression of aleutian mink disease parvovirus capsid proteins by a recombinant vaccinia virus: self-assembly of capsid proteins into particles. J. Virol.3077–3085 (1992).
  • Wu H, Marshall EB, Bradley DB, Michael JM, Kenneth BP. Expression of Aleutian mink disease parvovirus capsid proteins in a baculovirus expression system for potential diagnostic use. J. Vet. Diagn. Invest.6, 23–29 (1994).
  • Knuuttila A, Aronen P, Saarinen A, Vapalahti O. Development and evaluation of an enzyme-linked immunosorbent assay based on recombinant VP2 capsids for the detection of antibodies to Aleutian mink disease virus. Clin. Vaccine Immunol.6(9), 1360–1365 (2009).
  • Perelygina L, Patrusheva I, Hombaiah S et al. Production of herpes B virus recombinant glycoproteins and evaluation of their diagnostic potential. J. Clin. Microbiol.43(2), 620–628 (2005).
  • Lyoo YS, Kleiboeker SB, Jang KY et al. A simple and rapid chromatographic strip test for detection of antibody to porcine reproductive and respiratory syndrome virus. J. Vet. Diagn. Invest.17(5), 469–473 (2005).
  • Chen TH, Pan CH, Jong MH et al. Development of a chromatographic strip assay for detection of porcine antibodies to 3ABC non-structural protein of foot-and-mouth disease virus serotype O. J. Vet. Med. Sci.71(6), 703–708 (2009).
  • Cui S, Chen C, Tong G. A simple and rapid immunochromatographic strip test for monitoring antibodies to H5 subtype avian influenza virus. J. Virol. Methods152(1–2), 102–105 (2008).
  • Clavijo A, Hole K, Li M, Collignon B. Simultaneous detection of antibodies to foot-and-mouth disease non-structural proteins 3ABC, 3D, 3A and 3B by a multiplexed Luminex assay to differentiate infected from vaccinated cattle. Vaccine24(10), 1693–704 (2006).
  • Moonen P, van der Linde E, Chénard G, Dekker A. Comparable sensitivity and specificity in three commercially available ELISAs to differentiate between cattle infected with or vaccinated against foot-and-mouth disease virus. Vet. Microbiol.99(2), 93–101 (2004).
  • Brocchi E, Bergmann IE, Dekker A et al. Comparative evaluation of six ELISAs for the detection of antibodies to the non-structural proteins of foot-and-mouth disease virus. Vaccine24(47–48), 6966–6979 (2006).
  • Yu Z, Jin M, Xu X et al. Development of a specific latex agglutination test based on a recombinant hemagglutinin protein to detect antibodies to H5 avian influenza viruses. Avian Dis.50(2), 264–268 (2006).
  • Horie M, Ogawa H, Yamada K et al. A latex agglutination test using a recombinant nucleoprotein for detection of antibodies against avian influenza virus. J. Virol. Methods61(2), 259–264 (2009).
  • Yang J, Hua, Q, Chen H, Lv J, Chen B, Ruan Z. A rapid assay for detecting antibody against Bluetongue virus with a latex agglutination test using recombinant VP7 antigen. J. Vet. Diagn. Invest.22, 242–244 (2010).
  • Mullett WM, Lai EP, Yeung JM. Surface plasmon resonance-based immunoassays. Methods22(1), 77–91 (2000).
  • Cho HS, Park NY. Serodiagnostic comparison between two methods, ELISA and surface plasmon resonance for the detection of antibodies of classical swine fever. J. Vet. Med. Sci.68(12), 1327–1329 (2006).
  • Piliarik M, Vaisocherová H, Homola J. Surface plasmon resonance biosensing. Methods Mol. Biol.503, 65–88 (2009).
  • Sambles JR, Bradbery GW, Yang FZ. Optical excitation of surface plasmons: an introduction. Contemp. Phys.32, 173–183 (1991).
  • Malmqvist M. Surface plasmon resonance for detection and measurement of antibody–antigen affinity and kinetics. Curr. Opin. Immunol.5(2), 282–286 (1993).
  • Saliki JT, Libeau G, House JA, Mebus CA, Dubovi EJ. A monoclonal antibody based blocking ELISA for specific detection and titration of Peste des petits ruminants antibody in caprine and ovine sera. J. Clin. Microbiol.31, 1075–1082 (1993).
  • Libeau G, Prehaud C, Lancelot R et al. Development of a competitive ELISA for detecting antibodies to the Peste des petits ruminants virus using a recombinant nucleoprotein. Res. Vet. Sci.58, 50–55 (1995).
  • King B, Brian DA. Bovine coronavirus structural proteins. J. Virol.42, 700–707 (1982).
  • Shearer PL, Bonne N, Clark P, Sharp M, Raidal SR. Development and applications of a monoclonal antibody to a recombinant beak and feather disease virus (BFDV) capsid protein. J. Virol. Methods147(2), 206–212 (2008).
  • Carn VM. An antigen trapping ELISA for the detection of capripoxvirus in tissue culture supernatant and biopsy samples. J. Virol. Methods51(1), 95–102 (1995).
  • Sapats S, Gould G, Trinidad L, Parede LH, David C, Ignjatovic J. An ELISA for detection of infectious bursal disease virus and differentiation of very virulent strains based on single chain recombinant chicken antibodies. Avi. Pathol.34(6), 449–455 (2005).
  • Foord AJ, Muller JD, Yu M, Wang LF, Heine HG. Production and application of recombinant antibodies to foot-and-mouth disease virus non-structural protein 3ABC. J. Immunol. Methods321(1–2), 142–151 (2007).

Patents

  • North Carolina State University: Maclachlan NJ, Reddington GM, Reddington JJ. Hybridomas producing bluetongue virus-specific monoclonals. US 5652134 (1997).
  • Republic Of Korea (Ministry Of Agriculture And Forestry, National Veterinary Research): Choi K-S, Nah J-J,Ko Y-J, Jo N. Rapid diagnostic methods of Peste des Petits Ruminants using recombinant nucleocapsid protein expressed in insect cells and monoclonal antibody. US 7303913 (2007).
  • Pharmacia & Upjohn Company: Petrovskis EA, Post LE, Timmins JG. Pseudorabies virus protein cross reference to related applications. US 6255078 (2001).
  • Aesculaap Beheer BV: Koch G, Maria MH, Noteborm M. Chicken anemia virus mutants and vaccines and uses based on the viral proteins VP1, VP2 and VP3 or sequences of that virus coding there for. US 5952002 (1999).
  • Xia N, Chen Y, Ge S, Luo W, Zhang J. Monoclonal antibodies binding to avian influenza virus subtype h5 haemagglutinin and use thereof. US 20090068637 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.