701
Views
67
CrossRef citations to date
0
Altmetric
Review

Nanobodies®: proficient tools in diagnostics

, &
Pages 777-785 | Published online: 09 Jan 2014

References

  • Reichert JM. Antibodies to watch in 2010. MAbs2(1), 84–100 (2010).
  • Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat. Biotechnol.23(9), 1105–1116 (2005).
  • Saerens D, Ghassabeh GH, Muyldermans S. Single-domain antibodies as building blocks for novel therapeutics. Curr. Opin. Pharmacol.8(5), 600–608 (2008).
  • Barthelemy PA, Raab H, Appleton BA et al. Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. J. Biol. Chem.283(6), 3639–3654 (2008).
  • Wesolowski J, Alzogaray V, Reyelt J et al. Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med. Microbiol. Immunol.198(3), 157–174 (2009).
  • Dimitrov DS. Engineered CH2 domains (nanoantibodies). MAbs1(1), 26–28 (2009).
  • Muyldermans S. Single domain camel antibodies: current status. J. Biotechnol.74(4), 277–302 (2001).
  • Conrath K, Vincke C, Stijlemans B et al. Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic a VH. J. Mol. Biol.350(1), 112–125 (2005).
  • Desmyter A, Transue TR, Ghahroudi MA et al. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. Biol.3(9), 803–811 (1996).
  • De Genst E, Silence K, Decanniere K et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc. Natl Acad. Sci. USA103(12), 4586–4591 (2006).
  • Vincke C, Loris R, Saerens D et al. General strategy to humanize a Camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem.284(5), 3273–3284 (2009).
  • Haab BB, Dunham MJ, Brown PO. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol.2(2), RESEARCH0004 (2001).
  • Van Bockstaele F, Holz JB, Revets H. The development of nanobodies for therapeutic applications. Curr. Opin. Investig. Drugs10(11), 1212–1224 (2009).
  • Huang L, Reekmans G, Saerens D et al. Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens. Bioelectron.21(3), 483–490 (2005).
  • Rothbauer U, Zolghadr K, Muyldermans S et al. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell Proteomics7(2), 282–289 (2008).
  • Saerens D, Stijlemans B, Baral TN et al. Parallel selection of multiple anti-infectome Nanobodies without access to purified antigens. J. Immunol. Methods329(1–2), 138–150 (2008).
  • Verheesen P, Roussis A, de Haard HJ et al. Reliable and controllable antibody fragment selections from camelid non-immune libraries for target validation. Biochim. Biophys. Acta.1764(8), 1307–1319 (2006).
  • Stijlemans B, Conrath K, Cortez-Retamozo V et al. Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J. Biol. Chem.279(2), 1256–1261 (2004).
  • Deckers N, Saerens D, Kanobana K et al. Nanobodies, a promising tool for species-specific diagnosis of Taenia solium cysticercosis. Int. J. Parasitol.39(5), 625–633 (2009).
  • Antoine-Moussiaux N, Saerens D, Desmecht D. Flow cytometric enumeration of parasitaemia and hematologic changes in trypanosoma-infected mice. Acta. Trop.107(2), 139–144 (2008).
  • Franco EJ, Sonneson GJ, Delegge TJ et al. Production and characterization of a genetically engineered anti-caffeine camelid antibody and its use in immunoaffinity chromatography. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci.878(2), 177–186 (2010).
  • Ladenson RC, Crimmins DL, Landt Y, Ladenson JH. Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal. Chem.78(13), 4501–4508 (2006).
  • Goldman ER, Anderson GP, Conway J et al. Thermostable llama single domain antibodies for detection of botulinum A neurotoxin complex. Anal. Chem.80(22), 8583–8591 (2008).
  • Anderson GP, Goldman ER. TNT detection using llama antibodies and a two-step competitive fluid array immunoassay. J. Immunol. Methods339(1), 47–54 (2008).
  • Anderson GP, Moreira SC, Charles PT et al. TNT detection using multiplexed liquid array displacement immunoassays. Anal. Chem.78(7), 2279–2285 (2006).
  • Vo-Dinh T, Kasili P, Wabuyele M. Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. Nanomedicine2(1), 22–30 (2006).
  • Ryan S, Kell AJ, van Faassen H et al. Single-domain antibody-nanoparticles: promising architectures for increased Staphylococcus aureus detection specificity and sensitivity. Bioconjug. Chem.20(10), 1966–1974 (2009).
  • Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ. Antibody production, design and use for biosensor-based applications. Semin. Cell Dev. Biol.20(1), 10–26 (2009).
  • Saerens D, Huang L, Bonroy K, Muyldermans S. Antibody fragments as probe in biosensor development. Sensors8(8), 4669–4686 (2008).
  • Pleschberger M, Saerens D, Weigert S et al. An S-layer heavy chain camel antibody fusion protein for generation of a nanopatterned sensing layer to detect the prostate-specific antigen by surface plasmon resonance technology. Bioconjug. Chem.15(3), 664–671 (2004).
  • Saerens D, Frederix F, Reekmans G et al. Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing. Anal. Chem.77(23), 7547–7555 (2005).
  • Wu AM. Antibodies and antimatter: the resurgence of immuno-PET. J. Nucl. Med.50(1), 2–5 (2009).
  • Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol.23(9), 1137–1146 (2005).
  • van Dongen GA, Visser GW, Lub-de Hooge MN, de Vries EG, Perk LR. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist12(12), 1379–1389 (2007).
  • Kenanova V, Wu AM. Tailoring antibodies for radionuclide delivery. Expert Opin. Drug Deliv.3(1), 53–70 (2006).
  • Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett.414(3), 521–526 (1997).
  • Huang L, Gainkam LO, Caveliers V et al. SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol. Imaging Biol.10(3), 167–175 (2008).
  • De Groeve K, Deschacht N, De Koninck C et al. Nanobodies as tools for in vivo imaging of specific immune cell types. J. Nucl. Med.51(5), 782–789 (2010).
  • Penault-Llorca F, Cayre A, Arnould L et al. Is there an immunohistochemical technique definitively valid in epidermal growth factor receptor assessment? Oncol. Rep.16(6), 1173–1179 (2006).
  • Roovers RC, Laeremans T, Huang L et al. Efficient inhibition of EGFR signaling and of tumor growth by antagonistic anti-EFGR Nanobodies. Cancer Immunol. Immunother.56(3), 303–317 (2007).
  • Vaneycken I, Govaert J, Vincke C et al.In vitro analysis and in vivo tumor targeting of a humanized, grafted nanobody in mice using pinhole SPECT/Micro-CT. J. Nucl. Med.51(7), 1099–106 (2010).
  • Tijink BM, Laeremans T, Budde M et al. Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology. Mol. Cancer Ther.7(8), 2288–2297 (2008).
  • Gainkam LO, Huang L, Caveliers V et al. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J. Nucl. Med.49(5), 788–795 (2008).
  • Olichon A, Surrey T. Selection of genetically encoded fluorescent single domain antibodies engineered for efficient expression in Escherichia coli.J. Biol. Chem.282(50), 36314–36320 (2007).
  • Rothbauer U, Zolghadr K, Tillib S et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods3(11), 887–889 (2006).
  • Kirchhofer A, Helma J, Schmidthals K et al. Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol.17(1), 133–138 (2010).
  • Schornack S, Fuchs R, Huitema E et al. Protein mislocalization in plant cells using a GFP-binding chromobody. Plant J.60(4), 744–754 (2009).
  • Cruz HJ, Rosa CC, Oliva AG. Immunosensors for diagnostic applications. Parasitol. Res.88(13 Suppl. 1), S4–S7 (2002).
  • Luppa PB, Sokoll LJ, Chan DW. Immunosensors – principles and applications to clinical chemistry. Clin. Chim. Acta.314(1–2), 1–26 (2001).
  • Alvarez-Rueda N, Behar G, Ferre V et al. Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Mol. Immunol.44(7), 1680–1690 (2007).
  • Yau KY, Groves MA, Li S et al. Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. J. Immunol. Methods281(1–2), 161–175 (2003).
  • Doyle PJ, Arbabi-Ghahroudi M, Gaudette N et al. Cloning, expression, and characterization of a single-domain antibody fragment with affinity for 15-acetyl-deoxynivalenol. Mol. Immunol.45(14), 3703–3713 (2008).
  • Sonneson GJ, Horn JR. Hapten-induced dimerization of a single-domain VHH camelid antibody. Biochemistry48(29), 6693–6695 (2009).
  • Choi JW, Oh BK, Kim YK, Min J. Nanotechnology in biodevices. J. Microbiol. Biotechnol.17(1), 5–14 (2007).
  • Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem.53(11), 2002–2009 (2007).
  • Muruganandam A, Tanha J, Narang S, Stanimirovic D. Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood–brain barrier endothelium. FASEB J.16(2), 240–242 (2002).
  • Tanha J, Muruganandam A, Stanimirovic D. Phage display technology for identifying specific antigens on brain endothelial cells. Methods Mol. Med.89, 435–449 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.