546
Views
45
CrossRef citations to date
0
Altmetric
Review

Microfluidic devices for diagnostic applications

&
Pages 505-519 | Published online: 09 Jan 2014

References

  • Vyawahare S, Griffiths AD, Merten CA. Miniaturization and parallelization of biological and chemical assays in microfluidic devices. Chem. Biol.17(10), 1052–1065 (2010).
  • Manz A, Graber N, Widmer HM. Miniaturized total chemical-analysis systems – a novel concept for chemical sensing. Sens. Actuators B Chem.1(1–6), 244–248 (1990).
  • Qin D, Xia Y, Whitesides GM. Rapid prototyping of complex structures with feature sizes larger than 20 mum. Advanced Mater.8(11), 917–919 (1996).
  • Becker H, Heim U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuators A Phys.83(1–3), 130–135 (2000).
  • Focke M, Faltin B, Hoesel T et al. Blow molding of polymer foils for rapid prototyping of microfluidic cartridges. Presented at: 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences, µTAS 2008. San Diego, CA, USA, 12–16 October 2008.
  • Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip8(12), 2146–2150 (2008).
  • Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal. Chem.81(16), 7091–7095 (2009).
  • Lu Y, Shi W, Qin J, Lin B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal. Chem.82(1), 329–335 (2010).
  • Bruzewicz DA, Reches M, Whitesides GM. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal. Chem.80(9), 3387–3392 (2008).
  • Olkkonen J, Lehtinen K, Erho T. Flexographically printed fluidic structures in paper. Anal. Chem.82(24), 10246–10250 (2010).
  • Osborn JL, Lutz B, Fu E, Kauffman P, Stevens DY, Yager P. Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip10(20), 2659–2665 (2010).
  • Zimmermann M, Schmid H, Hunziker P, Delamarche E. Capillary pumps for autonomous capillary systems. Lab Chip7(1), 119–125 (2007).
  • Gervais L, Delamarche E. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip9(23), 3330–3337 (2009).
  • Duffy DC, Gillis HL, Lin J, Sheppard NF, Kellogg GJ. Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal. Chem.71(20), 4669–4678 (1999).
  • Darby SG, Moore MR, Friedlander TA et al. A metering rotary nanopump for microfluidic systems. Lab Chip10(23), 3218–3226 (2010).
  • Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science288(5463), 113–116 (2000).
  • Wang XY, Cheng C, Wang SL, Liu SR. Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluidics6(2), 145–162 (2009).
  • Hatch A, Kamholz AE, Hawkins KR et al. A rapid diffusion immunoassay in a T-sensor. Nat. Biotechnol.19(5), 461–465 (2001).
  • Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev.39(3), 1153–1182 (2010).
  • Ray Kim W. Global epidemiology and burden of hepatitis C. Microbes Infect.4(12), 1219–1225 (2002).
  • Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem. Int. Ed. Engl.46(8), 1318–1320 (2007).
  • Peele JD, Gadsden RH, Crews R. Semiautomated vs visual reading of urinalysis dipsticks. Clin. Chem.23(12), 2242–2246 (1977).
  • Pugia MJ, Lott JA, Profitt JA, Cast TK. High-sensitivity dye binding assay for albumin in urine. J. Clin. Lab. Anal.13(4), 180–187 (1999).
  • Abe K, Suzuki K, Citterio D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal. Chem.80(18), 6928–6934 (2008).
  • Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry8(9), 871–874 (1971).
  • Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal. Bioanal. Chem.398(2), 885–893 (2010).
  • Kamholz AE, Weigl BH, Finlayson BA, Yager P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal. Chem.71(23), 5340–5347 (1999).
  • Kamholz AE, Yager P. Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophys. J.80(1), 155–160 (2001).
  • Weigl BH, Yager P. Microfluidics – microfluidic diffusion-based separation and detection. Science283(5400), 346–347 (1999).
  • Jandik P, Weigl BH, Kessler N et al. Initial study of using a laminar fluid diffusion interface for sample preparation in high-performance liquid chromatography. J. Chromatogr. A954(1–2), 33–40 (2002).
  • Lai JJ, Nelson KE, Nash MA, Hoffman AS, Yager P, Stayton PS. Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip9(14), 1997–2002 (2009).
  • Xia N, Hunt TP, Mayers BT et al. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed. Microdevices8(4), 299–308 (2006).
  • Kauffman P, Fu E, Lutz B, Yager P. Visualization and measurement of flow in two-dimensional paper networks. Lab Chip10(19), 2614–2617 (2010).
  • Martinez AW, Phillips ST, Carrilho E, Thomas SW 3rd, Sindi H, Whitesides GM. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem.80(10), 3699–3707 (2008).
  • Delaney JL, Hogan CF, Tian J, Shen W. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal. Chem.83(4), 1300–1306. (2011).
  • Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. Plos One4(7), e6320 (2009).
  • Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip11(2), 315–322 (2011).
  • Rodriguez WR, Christodoulides N, Floriano PN et al. A microchip CD4 counting method for HIV monitoring in resource-poor settings. PLoS Med.2(7), e182 (2005).
  • Ozcan A, Demirci U. Ultra wide-field lens-free monitoring of cells on-chip. Lab Chip8(1), 98–106 (2008).
  • Moon S, Keles HO, Ozcan A et al. Integrating microfluidics and lensless imaging for point-of-care testing. Biosens. Bioelectron.24(11), 3208–3214 (2009).
  • Olive DM. Detection of enterotoxigenic Escherichia coli after polymerase chain reaction amplification with a thermostable DNA polymerase. J. Clin. Microbiol.27(2), 261–265 (1989).
  • Kwok S, Mack DH, Mullis KB et al. Identification of human immunodeficiency virus sequences by using in vitro enzymatic amplification and oligomer cleavage detection. J. Virol.61(5), 1690–1694 (1987).
  • Hashimoto M, Barany F, Xu F, Soper SA. Serial processing of biological reactions using flow-through microfluidic devices: coupled PCR/LDR for the detection of low-abundant DNA point mutations. Analyst132(9), 913–921 (2007).
  • Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl Acad. Sci. USA88(1), 189–193 (1991).
  • Kopp MU, Mello AJ, Manz A. Chemical amplification: continuous-flow PCR on a chip. Science280(5366), 1046–1048 (1998).
  • Notomi T, Okayama H, Masubuchi H et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res.28(12), E63 (2000).
  • Kuboki N, Inoue N, Sakurai T et al. Loop-mediated isothermal amplification for detection of African trypanosomes. J. Clin. Microbiol.41(12), 5517–5524 (2003).
  • Fukuta S, Iida T, Mizukami Y et al. Detection of Japanese yam mosaic virus by RT-LAMP. Arch. Virol.148(9), 1713–1720 (2003).
  • Imai M, Ninomiya A, Minekawa H et al. Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection. Vaccine24(44–46), 6679–6682 (2006).
  • Curtis KA, Rudolph DL, Owen SM. Sequence-specific detection method for reverse transcription, loop-mediated isothermal amplification of HIV-1. J. Med. Virol.81(6), 966–972 (2009).
  • Parida M, Posadas G, Inoue S, Hasebe F, Morita K. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J. Clin. Microbiol.42(1), 257–263 (2004).
  • Fang X, Liu Y, Kong J, Jiang X. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal. Chem.82(7), 3002–3006 (2010).
  • Martensson G, Skote M, Malmqvist M et al. Rapid PCR amplification of DNA utilizing Coriolis effects. Eur. Biophys. J. Biophys.35(6), 453–458 (2006).
  • Lutz S, Weber P, Focke M et al. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip10(7), 887–893 (2010).
  • Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol.4(7), 1115–1121 (2006).
  • Erickson KA, Wilding P. Evaluation of a novel point-of-care system, the I-stat portable clinical analyzer. Clin. Chem.39(2), 283–287 (1993).
  • Lee BS, Lee JN, Park JM et al. A fully automated immunoassay from whole blood on a disc. Lab Chip9(11), 1548–1555 (2009).
  • Lee BS, Lee YU, Kim HS et al. Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood. Lab Chip11(1), 70–78 (2011).
  • Park JM, Cho YK, Lee BS, Lee JG, Ko C. Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab Chip7(5), 557–564 (2007).
  • Jokerst JV, Jacobson JW, Bhagwandin BD, Floriano PN, Christodoulides N, Mcdevitt JT. Programmable nano-bio-chip sensors: analytical meets clinical. Anal. Chem.82(5), 1571–1579 (2010).
  • Ibrahim S, Van Den Engh G. Flow cytometry and cell sorting. In: Cell Separation. Kumar A, Galaev I, Mattiasson B (Eds). Springer, Berlin/Heidelberg, Germany, 19–39 (2007).
  • Fu AY, Spence C, Scherer A, Arnold FH, Quake SR. A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol.17(11), 1109–1111 (1999).
  • Dittrich PS, Schwille P. An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Anal. Chem.75(21), 5767–5774 (2003).
  • Hu X, Bessette PH, Qian J, Meinhart CD, Daugherty PS, Soh HT. Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl Acad. Sci. USA102(44), 15757–15761 (2005).
  • Wang MM, Tu E, Raymond DE et al. Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol.23(1), 83–87 (2005).
  • Fu AY, Chou HP, Spence C, Arnold FH, Quake SR. An integrated microfabricated cell sorter. Anal. Chem.74(11), 2451–2457 (2002).
  • Pommer MS, Zhang Y, Keerthi N et al. Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis29(6), 1213–1218 (2008).
  • Schaerli Y, Wootton RC, Robinson T et al. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal. Chem.81(1), 302–306 (2009).
  • Beer NR, Wheeler EK, Lee-Houghton L et al. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal. Chem.80(6), 1854–1858 (2008).
  • Sciancalepore AG, Polini A, Mele E, Girardo S, Cingolani R, Pisignano D. Rapid nested-PCR for tyrosinase gene detection on chip. Biosens. Bioelectron.26(5), 2711–2715 (2011).
  • Polini A, Mele E, Sciancalepore AG et al. Reduction of water evaporation in polymerase chain reaction microfluidic devices based on oscillating-flow. Biomicrofluidics4(part II), 036502 (2010).
  • Pollack MG, Fair RB, Shenderov AD. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett.77(11), 1725–1726 (2000).
  • Wulff-Burchfield E, Schell WA, Eckhardt AE et al. Microfluidic platform versus conventional real-time polymerase chain reaction for the detection of Mycoplasma pneumoniae in respiratory specimens. Diagn. Micr. Infec. Dis.67(1), 22–29 (2010).
  • Hua Z, Rouse JL, Eckhardt AE et al. Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal. Chem.82(6), 2310–2316 (2010).
  • Miller EM, Wheeler AR. A digital microfluidic approach to homogeneous enzyme assays. Anal. Chem.80(5), 1614–1619 (2008).
  • Miller EM, Ng AH, Uddayasankar U, Wheeler AR. A digital microfluidic approach to heterogeneous immunoassays. Anal. Bioanal. Chem.399(1), 337–345 (2011).
  • Barbulovic-Nad I, Yang H, Park PS, Wheeler AR. Digital microfluidics for cell-based assays. Lab Chip8(4), 519–526 (2008).
  • Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip8(12), 2188–2196 (2008).
  • Holt RA, Jones SJ. The new paradigm of flow cell sequencing. Genome Res.18(6), 839–846 (2008).
  • Metzker ML. Sequencing technologies – the next generation. Nat. Rev. Genet.11(1), 31–46 (2010).
  • Shendure J, Ji H. Next-generation DNA sequencing. Nat. Biotechnol.26(10), 1135–1145 (2008).
  • Singh AH, Doerks T, Letunic I, Raes J, Bork P. Discovering functional novelty in metagenomes: examples from light-mediated processes. J. Bacteriol.191(1), 32–41 (2009).
  • Uher R, Huezo-Diaz P, Perroud N et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J.9(4), 225–233 (2009).
  • Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464(7285), 59–65 (2010).
  • Ling Z, Kong J, Liu F et al. Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics11, 488 (2010).
  • Haeberle S, Zengerle R, Ducree J. Centrifugal generation and manipulation of droplet emulsions. Microfluid Nanofluid3(1), 65–75 (2007).
  • Jebrail MJ, Ng AH, Rai V, Hili R, Yudin AK, Wheeler AR. Synchronized synthesis of peptide-based macrocycles by digital microfluidics. Angew. Chem. Int. Ed. Engl.49(46), 8625–8629 (2010).

Patent

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.