203
Views
27
CrossRef citations to date
0
Altmetric
Review

Biosensors based on combined optical and electrochemical transduction for molecular diagnostics

, &
Pages 533-546 | Published online: 09 Jan 2014

References

  • Cass AE, Davis G, Francis GD et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem.56(4), 667–671 (1984).
  • Kroger S, Piletsky S, Turner AP. Biosensors for marine pollution research, monitoring and control. Mar. Pollut. Bull.45(1–12), 24–34 (2002).
  • Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron.16(1–2), 121–131 (2001).
  • Collings AF, Caruso F. Biosensors: recent advances. Rep. Prog. Phys.60(11), 1397–1445 (1997).
  • Eltzov E, Marks RS. Fiber-optic based cell sensors. Adv. Biochem. Eng. Biotechnol.117, 131–154 (2009).
  • Eltzov E, Marks RS, Voost S, Wullings B, Heringa BM. Flow-through real time bacterial biosensor for toxic compounds in water. Sens. Actuators B Chem.12(1), 11–18 (2009).
  • Pohanka M, Jun D, Kuca K. Amperometric biosensors for real time assays of organophosphates. Sensors Basel Sensors8(9), 5303–5312 (2008).
  • Viswanathan S, Radecka H, Radecki J. Electrochemical biosensors for food analysis. Monatsh. Chem.140(8), 891–899 (2009).
  • Mannino S, Wang J. Electrochemical methods for food and drink analysis. Electroanalysis4(9), 835–840 (1992).
  • Winquist F, Wide P, Lundström I. An electronic tongue based on voltammetry. Anal. Chim. Acta357(1–2), 21–31 (1997).
  • Volpe G, Ammid NH, Moscone D, Occhigrossi L, Palleschi G. Development of an immunomagnetic electrochemical sensor for detection of BT-CRY1AB/CRY1AC proteins in genetically modified corn samples. Anal. Lett.39(8), 1599–1609 (2006).
  • Ahmed MU, Idegami K, Chikae M et al. Electrochemical DNA biosensor using a disposable electrochemical printed (DEP) chip for the detection of SNPs from unpurified PCR amplicons. Analyst132(5), 431–438 (2007).
  • Wang J, Rivas G, Cai X et al. DNA electrochemical biosensors for environmental monitoring. A review. Anal. Chim. Acta347(1–2), 1–8 (1997).
  • Civit L, Fragoso A, O’Sullivan CK. Electrochemical biosensor for the multiplexed detection of human papillomavirus genes. Biosens. Bioelectron.26(4), 1684–1687 (2010).
  • Wang J. Survey and summary. From DNA biosensors to gene chips. Nucleic Acids Res.28(16), 3011–3016 (2000).
  • Erdem A, Ozsoz M. Electrochemical DNA biosensors based on DNA–drug interactions. Electroanalysis14(14), 965–974 (2002).
  • Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron.21(10), 1887–1892 (2006).
  • Patel PD. (Bio)sensors for measurement of analytes implicated in food safety: a review. Trends Analyt. Chem.21(2), 96–115 (2002).
  • Bakker E, Pretsch E. Potentiometric sensors for trace-level analysis. Trends Analyt. Chem.24(3), 199–207 (2005).
  • Grieshaber D, Mackenzie R, Vörös J, Reimhult E. Electrochemical biosensors – sensor principles and architectures. Sensors Basel Sensors8(3), 1400–1458 (2008).
  • Eggins BR. Chemical sensors and biosensors. John Wiley & Sons, NJ, USA (2002).
  • Chaubey A, Malhotra BD. Mediated biosensors. Biosens. Bioelectron.17(6–7), 441–456 (2002).
  • Korpan YI, Dzyadevich SV, Zharova VP, El’skaya AV. Conductometric biosensor for ethanol detection based on whole yeast cells. Ukr. Biokhim. Zh.66(1), 78–82 (1994).
  • Yildiz HB, Toppare L. Biosensing approach for alcohol determination using immobilized alcohol oxidase. Biosens. Bioelectron.21(12), 2306–2310 (2006).
  • Lagarde F, Bouyahia N, Hamlaoui ML, Hnaien M, Jaffrezic-Renault N. Impedance spectroscopy and conductometric biosensing for probing catalase reaction with cyanide as ligand and inhibitor. Bioelectrochemistry80(2), 155–161 (2011).
  • Jaffrezic-Renault N, Dzyadevych SV. Conductometric microbiosensors for environmental monitoring. Sensors Basel Sensors8(4), 2569–2588 (2008).
  • Baur J, Gondran C, Holzinger M, Defrancq E, Perrot H, Cosnier S. Label-free femtomolar detection of target DNA by impedimetric DNA sensor based on poly(pyrrole-nitrilotriacetic acid) film. Anal. Chem.82(3), 1066–1072 (2010).
  • Ionescu RE, Gondran C, Bouffier L, Jaffrezic-Renault N, Martelet C, Cosnier S. Label-free impedimetric immunosensor for sensitive detection of atrazine. Electrochim. Acta55(21), 6228–6232 (2010).
  • Pereira AC, Santos AD, Kubota LT. Trends in amperometric electrodes modification for electroanalytical applications. Quim Nova25(6A), 1012–1021 (2002).
  • Ahmed M, Hossain M, Tamiya E. Electrochemical biosensors for medical and food applications. Electroanalysis20(6), 616–626 (2008).
  • Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ. Screen-printed biosensors in microbiology; a review. Talanta82(5), 1629–1636 (2010).
  • Cooper J, Cass AEG. Biosensors: A Practical Approach. Oxford University Press, Oxford, UK (2004).
  • Yogeswaran U, Chen S-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors Basel Sensors8(1), 290–313 (2008).
  • Zoski C. Ultramicroelectrodes: Design, fabrication, and characterization. Electroanalysis14(15–16), 1041–1051 (2002).
  • Nair PR, Alam MA. Dimensionally frustrated diffusion towards fractal adsorbers. Phys. Rev. Lett.99(25), 256101 (2007).
  • De La Escosura-Muñiz A, Maltez-Da Costa M, Sánchez-Espinel C et al. Gold nanoparticle-based electrochemical magnetoimmunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. Biosens. Bioelectron.26(4), 1710–1714 (2010).
  • Yáñez-Sedeño P, Pingarrón JM. Gold nanoparticle-based electrochemical biosensors. Anal. Bioanal. Chem.382(4), 884–886 (2005).
  • Wanekaya A, Chen W, Myung N, Mulchandani A. Nanowire-based electrochemical biosensors. Electroanalysis18(6), 533–550 (2006).
  • Mani V, Chikkaveeraiah BV, Patel V, Gutkind JS, Rusling JF. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano.3(3), 585–594 (2009).
  • Jacobs CB, Peairs MJ, Venton BJ. Review: carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta662(2), 105–127 (2010).
  • Gooding JJ. Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta50(15), 3049–3060 (2005).
  • Wang J, Musameh M. Carbon-nanotubes doped polypyrrole glucose biosensor. Anal. Chim. Acta539(1–2), 209–213 (2005).
  • Kum MC, Joshi KA, Chen W, Myung NV, Mulchandani A. Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application. Talanta74(3), 370–375 (2007).
  • Cosnier S, Ionescu RE, Holzinger M. Aqueous dispersions of SWCNTs using pyrrolic surfactants for the electro-generation of homogeneous nanotube composites. Application to the design of an amperometric biosensor. J. Mater. Chem.18(42), 5129–5133 (2008).
  • Haddad R, Cosnier S, Maaref A, Holzinger M. Electrochemical characterization of biotin functionalized and regular single-walled carbon nanotube coatings. Application to amperometric glucose biosensors. Sensor Lett.7(5), 801–805 (2009).
  • Agui L, Eguilaz M, Pena-Farfal C, Yanez-Sedeno P, Pingarron JM. Lactate dehydrogenase biosensor based on an hybrid carbon nanotube-conducting polymer modified electrode. Electroanalysis21(3–5), 386–391 (2009).
  • Baravik I, Tel-Vered R, Ovits O, Willner I. Electrical contacting of redox enzymes by means of oligoaniline-cross-linked enzyme/carbon nanotube composites. Langmuir25(24), 13978–13983 (2009).
  • Malhotra R, Patel V, Vaque JP, Gutkind JS, Rusling JF. Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal. Chem.82(8), 3118–3123 (2010).
  • Lai GS, Yan F, Ju HX. Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal. Chem.81(23), 9730–9736 (2009).
  • Mearns F, Wong E, Short K, Hibbert D, Gooding J. DNA biosensor concepts based on a change in the DNA persistence length upon hybridization. Electroanalysis18(19–20), 1971–1981 (2006).
  • Du Y, Li B, Wei H, Wang Y, Wang E. Multifunctional label-free electrochemical biosensor based on an integrated aptamer. Anal. Chem.80(13), 5110–5117 (2008).
  • Shan D, Zhang J, Xue HG, Ding SN, Cosnier S. Colloidal laponite nanoparticles: extended application in direct electrochemistry of glucose oxidase and reagentless glucose biosensing. Biosens. Bioelectron.25(6), 1427–1433 (2010).
  • Chen H, Mousty C, Chen L, Cosnier S. A new approach for nitrite determination based on a HRP/catalase biosensor. Mater. Sci. Eng. C S.28(5–6), 726–730 (2008).
  • Cosnier S, Da Silva S, Shan D, Gorgy K. Electrochemical nitrate biosensor based on poly(pyrrole-viologen) film-nitrate reductase-clay composite. Bioelectrochemistry74(1), 47–51 (2008).
  • Silveira CM, Gomes SP, Araujo AN et al. An efficient non-mediated amperometric biosensor for nitrite determination. Biosens. Bioelectron.25(9), 2026–2032 (2010).
  • Silveira CM, Baur J, Holzinger M, Moura JJG, Cosnier S, Almeida MG. Enhanced direct electron transfer of a multihemic nitrite reductase on single-walled carbon nanotube modified electrodes. Electroanalysis22(24), 2973–2978 (2010).
  • Almeida MG, Serra A, Silveira CM, Moura JJG. Nitrite biosensing via selective enzymes – a long but promising route. Sensors Basel Sensors10(12), 11530–11555 (2010).
  • Yu X, Mai Z, Xiao Y, Zou X. Electrochemical Behavior and Determination of L-tyrosine at single-walled carbon nanotubes modified glassy carbon electrode. Electroanalysis20(11), 1246–1251 (2008).
  • Wang J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis17(1), 7–14 (2005).
  • Ding L, Du D, Zhang X, Ju H. Trends in cell-based electrochemical biosensors. Curr. Medic. Chem.15, 3160–3170 (2008).
  • Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E, Stricker S. Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis12(5), 317–325 (2000).
  • Szymanski M, Turner APF, Porter R. Electrochemical dissolution of silver nanoparticles and its application in metalloimmunoassay. Electroanalysis22(2), 191–198 (2010).
  • Qu B, Chu X, Shen G, Yu RQ. A novel electrochemical immunosensor based on colabeled silica nanoparticles for determination of total prostate specific antigen in human serum. Talanta76(4), 785–790 (2008).
  • Narayanaswamy R, Wolfbeis OS. Optical Sensors. Springer NY, USA (2004).
  • Leunga A, Shankarb PM, Mutharasan R. A review of fiber-optic biosensors. Sens. Actuators B Chem.125, 688–703 (2007).
  • Marks RS, Bassis E, Bychenko A, Levine MM. Chemiluminescent optical fiber immunosensor for detecting cholera antitoxin. Opt. Eng.36(12), 3258–3264 (1997).
  • Polyak B, Bassis E, Novodvorets A, Belkin S, Marks RS. Optical fiber bioluminescent whole-cell microbial biosensors to genotoxicants. Water Sci. Techn.42(1–2), 305–311 (2000).
  • Stolper P, Fabel S, Weller MG, Knopp D, Niessner R. Whole-cell luminescence-based flow-through biodetector for toxicity testing. Anal. Bioanal. Chem.390(4), 1181–1187 (2008).
  • Petrosova A, Konry T, Cosnier S et al. Development of a highly sensitive, field operable biosensor for serological studies of Ebola virus in central Africa. Sens. Actuators B Chem.122(2), 578–586 (2007).
  • Konry T, Novoa A, Shemer-Avni Y et al. Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen. Anal. Chem.77(6), 1771–1779 (2005).
  • Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y. Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta620(1–2), 8–26 (2008).
  • Moerner WE. New directions in single-molecule imaging and analysis. PNAS104(31), 12596–12602 (2007).
  • Leung A, Shankar PM, Mutharasan R. A review of fiber-optic biosensors. Sens. Actuators B Chem.125(2), 688–703 (2007).
  • Hale ZM, Payne FP, Marks RS, Lowe CR, Levine MM. The single mode tapered optical fibre loop immunosensor. Biosens. Bioelectron.11(1–2), 137–148 (1996).
  • Velasco-Garcia MN. Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Semin. Cell Develop. Bio.20(1), 27–33 (2009).
  • Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sens. Actuators B Chem.54(1–2), 3–15 (1999).
  • Homola J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem.377(3), 528–539 (2003).
  • Kurihara K, Ohkawa H, Iwasaki Y, Niwa O, Tobita T, Suzuki K. Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber. Anal. Chim. Acta523(2), 165–170 (2004).
  • Pasic A, Koehler H, Klimant I, Schaupp L. Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue. Sens. Actuators B Chem.122(1), 60–68 (2007).
  • Weidgans BM. New fluorescent optical pH sensors with minimal effects of ionic strength. In: New Fluorescent Optical pH Sensors with Minimal Effects of Ionic Strength. Regensburg University PhD thesis. Department of Chemistry and Pharmacy, Regensburg University, Regensburg, Germany (2004).
  • Schroeder CR, Neurauter G, Klimant I. Luminescent dual sensor for time-resolved imaging in aquatic systems. Microchimica Acta158(3), 205–218 (2007).
  • Weidgans BM, Krause C, Klimant I, Wolfbeis OS. Fluorescent pH sensors with negligible sensitivity to ionic strength. Analyst129(7), 645–650 (2004).
  • Marks RS, Novoa A, Konry T, Krais R, Cosnier S. Indium tin oxide-coated optical fiber tips for affinity electropolymerization. Mater. Sci. Eng. C S21(1–2), 189–194 (2002).
  • Wu WF, Chiou BS. Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing. Thin Solid Films247(2), 201–207 (1994).
  • Naseem S, Coutts TJ. The influence of deposition parameters on the optical and electrical properties of r.f.-sputter- deposited indium tin oxide films. Thin Solid Films138(1), 65–70 (1986).
  • Knickerbocker SA, Kulkarni AK. Calculation of the figure of merit for indium tin oxide-films based on basic theory. J. Vac. Sci. Technol. A.13(3), 1048–1052 (1995).
  • Chiou BS, Tsai JH. Antireflective coating for ITO films deposited on glass substrate. J. Mater. Sci. Mater.10(7), 491–495 (1999).
  • Agnihotry, Saini KK, Saxena TK, Nagpal KC, Chandra S. Studies on e-beam deposited transparent conductive films of In2O3:Sn at moderate substrate temperatures. J. Phys. D. Appl. Phys.18(10), 2087 (1985).
  • Alf ME, Asatekin A, Barr MC et al. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater.22(18), 1993–2027 (2010).
  • Shin JH, Shin SH, Park JI, Kim HH. Properties of dc magnetron sputtered indium tin oxide films on polymeric substrates at room temperature. J. Appl. Phys.89(9), 5199–5203 (2001).
  • Konry T, Marks RS. Physico-chemical studies of indium tin oxide-coated fiber optic biosensors. Thin Solid Films492(1–2), 313–321 (2005).
  • Ionescu RE, Gondran C, Cosnier S, Gheber LA, Marks RS. Comparison between the performances of amperometric immunosensors for cholera antitoxin based on three enzyme markers. Talanta66(1), 15–20 (2005).
  • Ionescu RE, Herrmann S, Cosnier S, Marks RS. A polypyrrole cDNA electrode for the amperometric detection of the West Nile Virus. Electrochem. Commun.8(11), 1741–1748 (2006).
  • Petrosova A, Konry T, Cosnier S et al. Development of a highly sensitive, field operable biosensor for serological studies of Ebola virus in central Africa. Sens. Actuators B Chem.122(2), 578–586 (2007).
  • Konry T, Heyman Y, Cosnier S, Gorgy K, Marks RS. Characterization of thin poly(pyrrole-benzophenone) film morphologies electropolymerized on indium tin oxide coated optic fibers for electrochemical and optical biosensing. Electrochim. Acta53(16), 5128–5135 (2008).
  • Abu-Rabeah K, Atias D, Herrmann S et al. Characterization of electrogenerated polypyrrole-benzophenone films coated on poly(pyrrole-methyl metacrylate) optic-conductive fibers. Langmuir25(17), 10384–10389 (2009).
  • Cosnier S, Novoa A, Mousty C, Marks RS. Biotinylated alginate immobilization matrix in the construction of an amperometric biosensor: application for the determination of glucose. Anal. Chim. Acta453(1), 71–79 (2002).
  • Abu-Rabeah K, Polyak B, Ionescu RE, Cosnier S, Marks RS. Synthesis and characterization of a pyrrole–alginate conjugate and its application in a biosensor construction. Biomacromolecules6(6), 3313–3318 (2005).
  • Ionescu RE, Abu-Rabeah K, Cosnier S, Marks RS. Improved enzyme retention from an electropolymerized polypyrrole–alginate matrix in the development of biosensors. Electrochem. Commun.7(12), 1277–1282 (2005).
  • Abu-Rabeah K, Nita II, Tencaliec AM, Marks RS. New approach of constructing biosensing matrices by physical and chemical crosslinking of biotin–alginate with alginate-pyrrole. Electrochim. Acta54(18), 4359–4364 (2009).
  • Nita II, Abu-Rabeah K, Tencaliec AM, Cosnier S, Marks RS. Amperometric biosensor based on the electro-copolymerization of a conductive biotinylated-pyrrole and alginate–pyrrole. Synth. Met.159(12), 1117–1122 (2009).
  • Ionescu R, Abu-Rabeah K, Cosnier S, Durrieu C, Chovelon JM, Marks R. Amperometric algal chlorella vulgaris cell biosensors based on alginate and polypyrrole–alginate gels. Electroanalysis18(11), 1041–1046 (2006).
  • Atias D, Abu-Rabeah K, Herrmann S et al. Poly(methyl metacrylate) conductive fiber optic transducers as dual biosensor platforms. Biosens. Bioelectron.24(12), 3683–3687 (2009).
  • Konry T, Heyman Y, Cosnier S, Gorgy K, Marks RS. Characterization of thin poly (pyrrole-benzophenone) film morphologies electropolymerized on indium tin oxide coated optic fibers for electrochemical and optical biosensing. Electrochim. Acta53(16), 5128–5135 (2008).
  • Bentley A, Atkinson A, Jezek J, Rawson DM. Whole cell biosensors – electrochemical and optical approaches to ecotoxicity testing. Toxicol. in vitro15(4–5), 469–475 (2001).
  • Moses RG, Calvert D, Storlien LH. Evaluation of the accutrend GCT with respect to triglyceride monitoring. Diabetes Care19(11), 1305–1306 (1996).
  • Eltzov E, Marks RS. Whole-cell aquatic biosensors. Anal. Bioanal. Chem.400(4), 895–913 (2010).
  • Shan D, Qian B, Ding SN, Zhu W, Cosnier S, Xue HG. Enhanced solid-state electrochemiluminescence of tris(2,2´-bipyridyl)ruthenium(II) incorporated into electrospun nanofibrous mat. Anal. Chem.82(13), 5892–5896 (2010).
  • Eltzov E, Prilutsky D, Kushmaro A, Marks RS, Geddes CD. Metal-enhanced bioluminescence: an approach for monitoring biological luminescent processes. Appl. Phys. Lett.94(8), 083901 (2009).
  • Ben-Yoav H, Biran A, Pedahzur R et al. A whole cell electrochemical biosensor for water genotoxicity bio-detection. Electrochim. Acta54(25), 6113–6118 (2009).
  • Ionescu RE, Cosnier S, Herzog G et al. Amperometric immunosensor for the detection of anti-West Nile virus IgG using a photoactive copolymer. Enzyme Microb. Tech.40(3), 403–408 (2007).
  • Babkina SS, Ulakhovich NA. Amperometric biosensor based on denatured DNA for the study of heavy metals complexing with DNA and their determination in biological, water and food samples. Bioelectrochemistry63(1–2), 261–265 (2004).
  • Hooda V, Gahlaut A, Kumar H, Pundir CS. Biosensor based on enzyme coupled PVC reaction cell for electrochemical measurement of serum total cholesterol. Sens. Actuators B Chem.136(1), 235–241 (2009).
  • Ionescu RE, Cosnier S, Marks RS. Protease amperometric sensor. Anal. Chem.78(18), 6327–6331 (2006).
  • Abu-Rabeah K, Ashkenazi A, Atias D, Amir L, Marks RS. Highly sensitive amperometric immunosensor for the detection of Escherichia coli. Biosens. Bioelectron.24(12), 3461–3466 (2009).
  • Yang J, Yang T, Feng YY, Jiao K. A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment. Anal. Biochem.365(1), 24–30 (2007).
  • Liang RN, Zhang RM, Qin W. Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk. Sens. Actuators B Chem.141(2), 544–550 (2009).
  • Metilda P, Prasad K, Kala R et al. Ion imprinted polymer based sensor for monitoring toxic uranium in environmental samples. Anal. Chim. Acta582(1), 147–153 (2007).
  • Sergeyeva TA, Slinchenko OA, Gorbach LA et al. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection. Anal. Chim. Acta659(1–2), 274–279 (2010).
  • Siddiquee S, Yusof NA, Salleh AB, Bakar FA, Heng LY. Electrochemical DNA biosensor for the detection of specific gene related to Trichoderma harzianum species. Bioelectrochemistry79(1), 31–36 (2010).
  • Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB. Electrochemical detection of 17[β]-estradiol using DNA aptamer immobilized gold electrode chip. Biosens. Bioelectron.22(11), 2525–2531 (2007).
  • Kumar J, Jha SK, D’souza SF. Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens. Bioelectron.21(11), 2100–2105 (2006).
  • Choi JW, Kim YK, Oh BK, Song SY, Lee WH. Optical biosensor for simultaneous detection of captan and organophosphorus compounds. Biosens. Bioelectron.18(5–6), 591–597 (2003).
  • Gil GC, Mitchell RJ, Chang ST, Gu MB. A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosens. Bioelectron.15(1–2), 23–30 (2000).
  • Sobarzo A, Paweska JT, Herrmann S, Amir T, Marks RS, Lobel L. Optical fiber immunosensor for the detection of IgG antibody to Rift Valley fever virus in humans. J. Virol. Methods146(1–2), 327–334 (2007).
  • Sobarzo A, Groseth A, Dolnik O et al. Detection of Sudan ebolavirus (strain Gulu) epitopes that are targets of the humoral immune response in survivors. Int. J. Infect. Dis.14, E461–E462 (2010).
  • Ehrentreich-Förster E, Orgel D, Krause-Griep A et al. Biosensor-based on-site explosives detection using aptamers as recognition elements. Anal. Bioanal. Chem.391(5), 1793–1800 (2008).
  • Vedrine C, Leclerc JC, Durrieu C, Tran-Minh C. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens. Bioelectron.18(4), 457–463 (2003).
  • Silva LIB, Ferreira FDP, Freitas AC, Rocha-Santos TAP, Duarte AC. Optical fiber biosensor coupled to chromatographic separation for screening of dopamine, norepinephrine and epinephrine in human urine and plasma. Talanta80(2), 853–857 (2009).
  • Kuswandi B, Fikriyah CI, Gani AA. An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue. Talanta74(4), 613–618 (2008).
  • Lavine BK, Westover DJ, Kaval N, Mirjankar N, Oxenford L, Mwangi GK. Swellable molecularly imprinted polyN-(N-propyl)acrylamide particles for detection of emerging organic contaminants using surface plasmon resonance spectroscopy. Talanta72(3), 1042–1048 (2007).

Patent

  • Zweig ES. Dual glucose-turbidimetric analytical sensors US Patent, USA, 6984307 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.