108
Views
26
CrossRef citations to date
0
Altmetric
Review

Bone disease in multiple myeloma and precursor disease: novel diagnostic approaches and implications on clinical management

, , , &
Pages 593-603 | Published online: 09 Jan 2014

References

  • Kyle RA, Rajkumar SV. Multiple myeloma. N. Engl. J. Med.351(18), 1860–1873 (2004).
  • Melton LJ 3rd, Kyle RA, Achenbach SJ, Oberg AL, Rajkumar SV. Fracture risk with multiple myeloma: a population-based study. J. Bone Miner. Res.20(3), 487–493 (2005).
  • Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer110(8), 1860–1867 (2007).
  • Giuliani N, Colla S, Rizzoli V. New insight in the mechanism of osteoclast activation and formation in multiple myeloma: focus on the receptor activator of NF-κB ligand (RANKL). Exp. Hematol.32(8), 685–691 (2004).
  • Yaccoby S. Osteoblastogenesis and tumor growth in myeloma. Leuk. Lymphoma51(2), 213–220 (2010).
  • Bataille R, Chappard D, Marcelli C et al. Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J. Clin. Invest.88(1), 62–66 (1991).
  • Valentin-OpranA, Charhon SA, Meunier PJ, Edouard CM, Arlot ME. Quantitative histology of myeloma-induced bone changes. Br. J. Haematol.52(4), 601–610 (1982).
  • Jakob C, Zavrski I, Heider U et al. Serum levels of carboxy-terminal telopeptide of type-I collagen are elevated in patients with multiple myeloma showing skeletal manifestations in magnetic resonance imaging but lacking lytic bone lesions in conventional radiography. Clin. Cancer Res.9(8), 3047–3051 (2003).
  • Vejlgaard T, Abildgaard N, Jans H, Nielsen JL, Heickendorff L. Abnormal bone turnover in monoclonal gammopathy of undetermined significance: analyses of type I collagen telopeptide, osteocalcin, bone-specific alkaline phosphatase and propeptides of type I and type III procollagens. Eur. J. Haematol.58(2), 104–108 (1997).
  • Jakob C, Zavrski I, Heider U et al. Bone resorption parameters [carboxy-terminal telopeptide of type-I collagen (ICTP), amino-terminal collagen type-I telopeptide (NTx), and deoxypyridinoline (Dpd)] in MGUS and multiple myeloma. Eur. J. Haematol.69(1), 37–42 (2002).
  • Mundy GR. Myeloma bone disease. Eur. J. Cancer34(2), 246–251 (1998).
  • Roodman GD. Pathogenesis of myeloma bone disease. Leukemia23(3), 435–441 (2009).
  • Bataille R, Chappard D, Basle M. Excessive bone resorption in human plasmacytomas: direct induction by tumour cells in vivo. Br. J. Haematol.90(3), 721–724 (1995).
  • Anderson KC, Shaughnessy JD Jr, Barlogie B, Harousseau JL, Roodman GD. Multiple myeloma. Hematology Am. Soc. Hematol. Educ. Program214–240 (2002).
  • Tian E, Zhan F, Walker R et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med.349(26), 2483–2494 (2003).
  • Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells24(4), 986–991 (2006).
  • Terpos E, Sezer O, Croucher P, Dimopoulos MA. Myeloma bone disease and proteasome inhibition therapies. Blood110(4), 1098–1104 (2007).
  • Minter AR, Simpson H, Weiss BM, Landgren O. Bone disease from monoclonal gammopathy of undetermined significance to multiple myeloma: pathogenesis, interventions, and future opportunities. Semin. Hematol.48(1), 55–65 (2011).
  • Landgren O, Kyle RA, Pfeiffer RM et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood113(22), 5412–5417 (2009).
  • Weiss BM, Abadie J, Verma P, Howard RS, Kuehl WM. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood113(22), 5418–5422 (2009).
  • International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br. J. Haematol.121(5), 749–757 (2003).
  • Bida JP, Kyle RA, Therneau TM et al. Disease associations with monoclonal gammopathy of undetermined significance: a population-based study of 17,398 patients. Mayo Clin. Proc.84(8), 685–693 (2009).
  • Kristinsson SY, Fears TR, Gridley G et al. Deep vein thrombosis after monoclonal gammopathy of undetermined significance and multiple myeloma. Blood112(9), 3582–3586 (2008).
  • Kristinsson SY, Bjorkholm M, Andersson TM et al. Patterns of survival and causes of death following a diagnosis of monoclonal gammopathy of undetermined significance: a population-based study. Haematologica94(12), 1714–1720 (2009).
  • Kyle RA, Remstein ED, Therneau TM et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med.356(25), 2582–2590 (2007).
  • Kyle RA, Therneau TM, Rajkumar SV et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med.346(8), 564–569 (2002).
  • Kristinsson SY, Tang M, Pfeiffer RM et al. Monoclonal gammopathy of undetermined significance and risk of skeletal fractures: a population-based study. Blood116(15), 2651–2655 (2010).
  • Melton LJ 3rd, Rajkumar SV, Khosla S, Achenbach SJ, Oberg AL, Kyle RA. Fracture risk in monoclonal gammopathy of undetermined significance. J. Bone Miner. Res.19(1), 25–30 (2004).
  • Gregersen H, Jensen P, Gislum M, Jorgensen B, Sorensen HT, Norgaard M. Fracture risk in patients with monoclonal gammopathy of undetermined significance. Br. J. Haematol.135(1), 62–67 (2006).
  • Pepe J, Petrucci MT, Nofroni I et al. Lumbar bone mineral density as the major factor determining increased prevalence of vertebral fractures in monoclonal gammopathy of undetermined significance. Br. J. Haematol.134(5), 485–490 (2006).
  • Bataille R, Chappard D, Basle MF. Quantifiable excess of bone resorption in monoclonal gammopathy is an early symptom of malignancy: a prospective study of 87 bone biopsies. Blood87(11), 4762–4769 (1996).
  • Hernandez JM, Suquia B, Queizan JA et al. Bone remodelation markers are useful in the management of monoclonal gammopathies. Hematol. J.5(6), 480–488 (2004).
  • Woitge HW, Horn E, Keck AV, Auler B, Seibel MJ, Pecherstorfer M. Biochemical markers of bone formation in patients with plasma cell dyscrasias and benign osteoporosis. Clin. Chem.47(4), 686–693 (2001).
  • Diamond T, Levy S, Smith A, Day P, Manoharan A. Non-invasive markers of bone turnover and plasma cytokines differ in osteoporotic patients with multiple myeloma and monoclonal gammopathies of undetermined significance. Intern. Med. J.31(5), 272–278 (2001).
  • Pecherstorfer M, Seibel MJ, Woitge HW et al. Bone resorption in multiple myeloma and in monoclonal gammopathy of undetermined significance: quantification by urinary pyridinium cross-links of collagen. Blood90(9), 3743–3750 (1997).
  • Laroche M, Attal M, Dromer C. Bone remodelling in monoclonal gammopathies of uncertain significance, symptomatic and nonsymptomatic myeloma. Clin. Rheumatol.15(4), 347–352 (1996).
  • Politou M, Terpos E, Anagnostopoulos A et al. Role of receptor activator of nuclear factor-κ B ligand (RANKL), osteoprotegerin and macrophage protein 1-α (MIP-1α) in monoclonal gammopathy of undetermined significance (MGUS). Br. J. Haematol.126(5), 686–689 (2004).
  • Kaiser M, Mieth M, Liebisch P et al. Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma. Eur. J. Haematol.80(6), 490–494 (2008).
  • Dimopoulos M, Terpos E, Comenzo RL et al. International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple myeloma. Leukemia23(9), 1545–1556 (2009).
  • Edelstyn GA, Gillespie PJ, Grebbell FS. The radiological demonstration of osseous metastases. Experimental observations. Clin. Radiol.18(2), 158–162 (1967).
  • Mahnken AH, Wildberger JE, Gehbauer G et al. Multidetector CT of the spine in multiple myeloma: comparison with MR imaging and radiography. AJR Am. J. Roentgenol.178(6), 1429–1436 (2002).
  • Gleeson TG, Moriarty J, Shortt CP et al. Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI). Skeletal Radiol.38(3), 225–236 (2009).
  • Breyer RJ 3rd, Mulligan ME, Smith SE, Line BR, Badros AZ. Comparison of imaging with FDG PET/CT with other imaging modalities in myeloma. Skeletal Radiol.35(9), 632–640 (2006).
  • Nanni C, Zamagni E, Farsad M et al. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur. J. Nucl. Med. Mol. Imaging33(5), 525–531 (2006).
  • Schirrmeister H, Bommer M, Buck AK et al. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging29(3), 361–366 (2002).
  • Bredella MA, Steinbach L, Caputo G, Segall G, Hawkins R. Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am. J. Roentgenol.184(4), 1199–1204 (2005).
  • Zamagni E, Nanni C, Patriarca F et al. Prognostic relevance of 18F-FDG PET/CT in newly diagnosed multiple myeloma patients receiving up-front autologous stem-cell transplantation (ASCT): a prospective study. Haematologica96(Suppl. 1), 31 (2011).
  • Ludwig H, Kumpan W, Sinzinger H. Radiography and bone scintigraphy in multiple myeloma: a comparative analysis. Br. J. Radiol.55(651), 173–181 (1982).
  • Even-SapirE, Mishani E, Flusser G, Metser U. 18F-fluoride positron emission tomography and positron emission tomography/computed tomography. Semin. Nucl. Med.37(6), 462–469 (2007).
  • Angtuaco EJ, Fassas AB, Walker R, Sethi R, Barlogie B. Multiple myeloma: clinical review and diagnostic imaging. Radiology231(1), 11–23 (2004).
  • Dinter DJ, Neff WK, Klaus J et al. Comparison of whole-body MR imaging and conventional x-ray examination in patients with multiple myeloma and implications for therapy. Ann. Hematol.88(5), 457–464 (2009).
  • Walker R, Barlogie B, Haessler J et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J. Clin. Oncol.25(9), 1121–1128 (2007).
  • Maffioli L, Steens J, Pauwels E, Bombardieri E. Applications of 99mTc-sestamibi in oncology. Tumori82(1), 12–21 (1996).
  • Pace L, Catalano L, Pinto A et al. Different patterns of technetium-99m sestamibi uptake in multiple myeloma. Eur. J. Nucl. Med.25(7), 714–720 (1998).
  • Catalano L, Pace L, Califano C et al. Detection of focal myeloma lesions by technetium-99m-sestamibi scintigraphy. Haematologica84(2), 119–124 (1999).
  • Adams BK, Fataar A, Nizami MA. Technetium-99m-sestamibi uptake in myeloma. J. Nucl. Med.37(6), 1001–1002 (1996).
  • Moulopoulos LA, Dimopoulos MA, Smith TL et al. Prognostic significance of magnetic resonance imaging in patients with asymptomatic multiple myeloma. J. Clin. Oncol.13(1), 251–256 (1995).
  • Bellaiche L, Laredo JD, Liote F et al. Magnetic resonance appearance of monoclonal gammopathies of unknown significance and multiple myeloma. The GRI Study Group. Spine22(21), 2551–2557 (1997).
  • Durie BG, Waxman AD, D’Agnolo A, Williams CM. Whole-body 18F-FDG PET identifies high-risk myeloma. J. Nucl. Med.43(11), 1457–1463 (2002).
  • Hillengass J, Zechmann C, Bauerle T et al. Dynamic contrast-enhanced magnetic resonance imaging identifies a subgroup of patients with asymptomatic monoclonal plasma cell disease and pathologic microcirculation. Clin. Cancer Res.15(9), 3118–3125 (2009).
  • Berenson JR, Lichtenstein A, Porter L et al. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J. Clin. Oncol.16(2), 593–602 (1998).
  • Berenson JR, Lichtenstein A, Porter L et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N. Engl. J. Med.334(8), 488–493 (1996).
  • Rosen LS, Gordon D, Kaminski M et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J.7(5), 377–387 (2001).
  • Morgan GJ, Davies FE, Gregory WM et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet376(9757), 1989–1999 (2010).
  • Kyle RA, Yee GC, Somerfield MR et al. American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J. Clin. Oncol.25(17), 2464–2472 (2007).
  • Anderson KC, Alsina M, Bensinger W et al. NCCN clinical practice guidelines in oncology: multiple myeloma. J. Natl Compr. Cancer Netw.7(9), 908–942 (2009).
  • Lacy MQ, Dispenzieri A, Gertz MA et al. Mayo clinic consensus statement for the use of bisphosphonates in multiple myeloma. Mayo Clin. Proc.81(8), 1047–1053 (2006).
  • Terpos E, Sezer O, Croucher PI et al. The use of bisphosphonates in multiple myeloma: recommendations of an expert panel on behalf of the European Myeloma Network. Ann. Oncol.20(8), 1303–1317 (2009).
  • Zervas K, Verrou E, Teleioudis Z et al. Incidence, risk factors and management of osteonecrosis of the jaw in patients with multiple myeloma: a single-centre experience in 303 patients. Br. J. Haematol.134(6), 620–623 (2006).
  • Gimsing P, Carlson K, Turesson I et al. Effect of pamidronate 30 mg versus 90 mg on physical function in patients with newly diagnosed multiple myeloma (Nordic Myeloma Study Group): a double-blind, randomised controlled trial. Lancet Oncol.11(10), 973–982 (2010).
  • Carter GD, Goss AN. Bisphosphonates and avascular necrosis of the jaws. Aust. Dent. J.48(4), 268 (2003).
  • Badros A, Terpos E, Katodritou E et al. Natural history of osteonecrosis of the jaw in patients with multiple myeloma. J. Clin. Oncol.26(36), 5904–5909 (2008).
  • Boonyapakorn T, Schirmer I, Reichart PA, Sturm I, Massenkeil G. Bisphosphonate-induced osteonecrosis of the jaws: prospective study of 80 patients with multiple myeloma and other malignancies. Oral Oncol.44(9), 857–869 (2008).
  • Mavrokokki T, Cheng A, Stein B, Goss A. Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J. Oral Maxillofac. Surg.65(3), 415–423 (2007).
  • Snowden JA, Ahmedzai SH, Ashcroft J et al. Guidelines for supportive care in multiple myeloma 2011. Br. J. Haematol.154(1), 76–103 (2010).
  • Terpos E, Moulopoulos LA, Dimopoulos MA. Advances in imaging and the management of myeloma bone disease. J. Clin. Oncol.29(14), 1907–1915 (2011).
  • Palumbo A, Anderson K. Multiple myeloma. N. Engl. J. Med.364(11), 1046–1060 (2011).
  • Mill WB, Griffith R. The role of radiation therapy in the management of plasma cell tumors. Cancer45(4), 647–652 (1980).
  • Leigh BR, Kurtts TA, Mack CF, Matzner MB, Shimm DS. Radiation therapy for the palliation of multiple myeloma. Int. J. Radiat. Oncol. Biol. Phys.25(5), 801–804 (1993).
  • Basile A, Cavalli M, Fiumara P et al. Vertebroplasty in multiple myeloma with osteolysis or fracture of the posterior vertebral wall. Usefulness of a delayed cement injection. Skeletal Radiol.40(7), 913–919 (2011).
  • Kallmes DF, Comstock BA, Heagerty PJ et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N. Engl. J. Med.361(6), 569–579 (2009).
  • Buchbinder R, Osborne RH, Ebeling PR et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N. Engl. J. Med.361(6), 557–568 (2009).
  • Berenson J, Pflugmacher R, Jarzem P et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol.12(3), 225–235 (2011).
  • Martin A, Garcia-Sanz R, Hernandez J et al. Pamidronate induces bone formation in patients with smouldering or indolent myeloma, with no significant anti-tumour effect. Br. J. Haematol.118(1), 239–242 (2002).
  • Musto P, Falcone A, Sanpaolo G, Bodenizza C, Carella AM. Pamidronate for early-stage, untreated myeloma. J. Clin. Oncol.21(16), 3177–3178; author reply 3178 (2003).
  • Musto P, Petrucci MT, Bringhen S et al. A multicenter, randomized clinical trial comparing zoledronic acid versus observation in patients with asymptomatic myeloma. Cancer113(7), 1588–1595 (2008).
  • Musto P, Falcone A, Sanpaolo G et al. Pamidronate reduces skeletal events but does not improve progression-free survival in early-stage untreated myeloma: results of a randomized trial. Leuk. Lymphoma44(9), 1545–1548 (2003).
  • D’Arena G, Gobbi PG, Broglia C et al. Pamidronate versus observation in asymptomatic myeloma: final results with long-term follow-up of a randomized study. Leuk. Lymphoma52(5), 771–775 (2011).
  • Pepe J, Petrucci MT, Mascia ML et al. The effects of alendronate treatment in osteoporotic patients affected by monoclonal gammopathy of undetermined significance. Calcif. Tissue Int.82(6), 418–426 (2008).
  • Berenson JR, Yellin O, Boccia RV et al. Zoledronic acid markedly improves bone mineral density for patients with monoclonal gammopathy of undetermined significance and bone loss. Clin. Cancer Res.14(19), 6289–6295 (2008).
  • Henry DH, Costa L, Goldwasser F et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J. Clin. Oncol.29(9), 1125–1132 (2011).
  • Fulciniti M, Tassone P, Hideshima T et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood114(2), 371–379 (2009).
  • Fonseca R, Trendle MC, Leong T et al. Prognostic value of serum markers of bone metabolism in untreated multiple myeloma patients. Br. J. Haematol.109(1), 24–29 (2000).
  • Terpos E, Dimopoulos MA, Sezer O et al. The use of biochemical markers of bone remodeling in multiple myeloma: a report of the International Myeloma Working Group. Leukemia24(10), 1700–1712 (2010).
  • Terpos E, Szydlo R, Apperley JF et al. Soluble receptor activator of nuclear factor κB ligand–osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood102(3), 1064–1069 (2003).
  • Terpos E, de la Fuente J, Szydlo R et al. Tartrate-resistant acid phosphatase isoform 5b: a novel serum marker for monitoring bone disease in multiple myeloma. Int. J. Cancer106(3), 455–457 (2003).
  • Coleman RE, Major P, Lipton A et al. Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J. Clin. Oncol.23(22), 4925–4935 (2005).
  • Jakob C, Sterz J, Liebisch P et al. Incorporation of the bone marker carboxy-terminal telopeptide of type-1 collagen improves prognostic information of the international staging system in newly diagnosed symptomatic multiple myeloma. Leukemia22(9), 1767–1772 (2008).
  • Terpos E, Berenson J, Cook RJ, Lipton A, Coleman RE. Prognostic variables for survival and skeletal complications in patients with multiple myeloma osteolytic bone disease. Leukemia24(5), 1043–1049 (2010).
  • Mailankody S, Mena E, Yuan CM, Balakumaran A, Kuehl WM, Landgren O. Molecular and biologic markers of progression in monoclonal gammopathy of undetermined significance to multiple myeloma. Leuk. Lymphoma51(12), 2159–2170 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.