29
Views
5
CrossRef citations to date
0
Altmetric
Perspective

Genetic determinants of anticancer drug activity: towards a global approach to personalized cancer medicine

&
Pages 567-577 | Published online: 09 Jan 2014

References

  • Amador ML, Oppenheimer D, Perea S et al. An epidermal growth factor receptor intron 1 polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res.64(24), 9139–9143 (2004).
  • Liu G, Gurubhagavatula S, Zhou W et al. Epidermal growth factor receptor polymorphisms and clinical outcomes in non-small-cell lung cancer patients treated with gefitinib. Pharmacogenomics J.8(2), 129–138 (2008).
  • McKibbin T, Zhao W, Tagen M et al. Epidermal growth factor receptor polymorphisms and risk for toxicity in paediatric patients treated with gefitinib. Eur. J. Cancer46(11), 2045–2051 (2010).
  • Agero AL, Dusza SW, Benvenuto-Andrade C, Busam KJ, Myskowski P, Halpern AC. Dermatologic side effects associated with the epidermal growth factor receptor inhibitors. J. Am. Acad. Dermatol.55(4), 657–670 (2006).
  • Saltz L, Rubin MS, Hochster H et al. Acne-like rash predicts response in patients treated with cetuximab (IMC-C225) plus irinotecan (CPT-11) in CPT-11 refractory colorectal cancer (CRC) that expresses epidermal growth factor receptor (EGFR). Clin. Cancer Res.7, 3766S (2001) (Abstract 559).
  • Picard S, Titier K, Etienne G et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood109, 3496–3499 (2007).
  • Judson I, Ma P, Peng B et al. Imatinib pharmacokinetics in patients with gastrointestinal stromal tumor: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother. Pharmacol.55, 379–386 (2005).
  • Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin. Pharmacokinet.44, 879–894 (2005).
  • Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood104(12), 3739–3745 (2004).
  • Hu S, Franke RM, Filipski KK et al. Interaction of imatinib with human organic ion carriers. Clin. Cancer Res.14(10), 3141–3148 (2008).
  • Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood104, 3739–3745 (2004).
  • Crossman LC, Druker BJ, Deininger MW, Pirmohamed M, Wang L, Clark RE. hOCT 1 and resistance to imatinib. Blood106(3), 1133–1134 (2005).
  • Wang L, Giannoudis A, Lane S, Williamson P, Pirmohamed M, Clark RE. Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin. Pharmacol. Ther.83(2), 258–264 (2008).
  • Kim DH, Sriharsha L, Xu W et al. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin. Cancer Res.15(14), 4750–4758 (2009).
  • Takahashi N, Miura M, Scott SA et al. Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J. Hum. Genet.55(11), 731–737 (2010).
  • Hegedus T, Orfi L, Seprodi A, Váradi A, Sarkadi B, Kéri G. Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim. Biophys. Acta1587(2–3), 318–325 (2002).
  • Dulucq S, Bouchet S, Turcq B et al. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood112(5), 2024–2027 (2008).
  • Ni LN, Li JY, Miao KR, Qiao C, Zhang SJ, Qiu HR, Qian SX. Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Med. Oncol.28(1), 265–269 (2011).
  • Gambacorti-Passerini C, Barni R, le Coutre P et al. Role of α1 acid glycoprotein in the in vivo resistance of human BCR–ABL+ leukemic cells to the abl inhibitor STI571. J. Natl Cancer Inst.92(20), 1641–1650 (2000).
  • Gschwind HP, Pfaar U, Waldmeier F et al. Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab. Dispos.33, 1503–1512 (2005).
  • Nebot N, Crettol S, D’Esposito F, Tattam B, Hibbs DE, Murray M. Participation of CYP2C8 and CYP3A4 in the N-demethylation of imatinib in human hepatic microsomes. Br. J. Pharmacol.161, 1059–1069 (2010).
  • Marsh S, Hoskins JM. Irinotecan pharmacogenomics. Pharmacogenomics11(7), 1003–1010 (2010).
  • Kim SR, Sai K, Tanaka-Kagawa T et al. Haplotypes and a novel defective allele of CES2 found in a Japanese population. Drug Metab. Dispos.35(10), 1865–1872 (2007).
  • Kwak EL, Bang YJ, Camidge DR et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med.363(18), 1693–1703 (2010).
  • Paez JG, Janne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304, 1497–1500 (2004).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350, 2129–2139 (2004).
  • Takano T, Ohe Y, Sakamoto H et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J. Clin. Oncol.23(28), 6829–6837 (2005).
  • Flaherty KT, Puzanov I, Kim KB et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med.363(9), 809–819 (2010).
  • Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene26, 6469–6487 (2007).
  • Gorre ME, Mohammed M, Ellwood K et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science293, 876–880 (2001).
  • Branford S, Rudzki Z, Walsh S et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood99(9), 3472–3475 (2002).
  • Choi YL, Soda M, Yamashita Y et al.; ALK Lung Cancer Study Group. EML4–ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med.363(18), 1734–1739 (2010).
  • Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (Herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res.61(12), 4744–4749 (2001).
  • Scaltriti M, Rojo F, Ocaña A et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl Cancer Inst.99(8), 628–638 (2007).
  • Baselga J, Tripathy D, Mendelsohn J et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol.14(3), 737–744 (1996).
  • Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL. Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene28(43), 3801–3813 (2009).
  • Hsu SC, Hung MC. Characterization of a novel tripartite nuclear localization sequence in the EGFR family. J. Biol. Chem.282(14), 10432–10440 (2007).
  • Jacobs B, De Roock W, Piessevaux H et al. Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J. Clin. Oncol.27(30), 5068–5074 (2009).
  • Nagy P, Friedlander E, Tanner M et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res.65, 473–482 (2005).
  • Regales L, Balak MN, Gong Y et al. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors. PLoS ONE2(8), E810 (2007).
  • Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res.65(23), 11118–11128 (2005).
  • Harris LN, You F, Schnitt SJ et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin. Cancer Res.13(4), 1198–1207 (2007).
  • Bean J, Brennan C, Shih JY et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA104(52), 20932–20937 (2007).
  • Karapetis CS, Khambata-Ford S, Jonker DJ et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med.359, 1757–1765 (2008).
  • Allegra CJ, Jessup JM, Somerfield MR et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J. Clin. Oncol.27, 2091–2096 (2009).
  • Johannessen CM, Boehm JS, Kim SY et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature468(7326), 968–972 (2010).
  • Nazarian R, Shi H, Wang Q et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature468(7326), 973–977 (2010).
  • Loupakis F, Pollina L, Stasi I et al. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J. Clin. Oncol.27(16), 2622–2629 (2009).
  • Frattini M, Saletti P, Romagnani E et al. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br. J. Cancer97(8), 1139–1145 (2007).
  • Li FH, Shen L, Li ZH et al. Impact of KRAS mutation and PTEN expression on cetuximab-treated colorectal cancer. World J. Gastroenterol.16(46), 5881–5888. (2010).
  • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat. Med.10(8), 789–799 (2004).
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011).
  • Ding L, Ellis MJ, Li S et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature464(7291), 999–1005 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.