135
Views
11
CrossRef citations to date
0
Altmetric
Review

Translating potential biomarker candidates for schizophrenia and depression to animal models of psychiatric disorders

, , , &
Pages 721-733 | Published online: 09 Jan 2014

References

  • Schwarz E, Izmailov R, Spain M et al. Validation of a blood-based laboratory test to aid in the confirmation of a diagnosis of schizophrenia. Biomark. Insights12(5), 539–547 (2010).
  • Häupl T, Stuhlmüller B, Grützkau A et al. Does gene expression analysis inform us in rheumatoid arthritis? Ann. Rheum. Dis.69(Suppl. 1), i37–i42 (2010).
  • Tordjman S, Drapier D, Bonnot O et al. Animal models relevant to schizophrenia and autism: validity and limitations. Behav. Genet.37(1), 61–78 (2007).
  • Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat. Neurosci.13(10), 1161–1169 (2010).
  • Tkacs NC, Thompson HJ. From bedside to bench and back again: research issues in animal models of human disease. Biol. Res. Nurs.8(1), 78–88 (2006).
  • Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology134(4), 319–329 (1997).
  • Willner P. Animal models of depression: an overview. Pharmacol. Ther.45(3), 425–455 (1990).
  • Fury W, Batliwalla F, Gregersen PK et al. Overlapping probabilities of top ranking gene lists, hypergeometric distribution, and stringency of gene selection criterion. In: Conference Proceedings of the International Conference of IEEE Engineering in Medicine and Biology Society1, 5531–5534 (2006).
  • Jiménez-Marín Á, Collado-Romero M, Ramirez-Boo M et al. Biological pathway analysis by ArrayUnlock and Ingenuity Pathway Analysis. BMC Proceedings3(Suppl 4), S6 (2009).
  • Lu Y, Huggins P, Bar-Joseph Z. Cross species analysis of microarray expression data. Bioinformatics25(12), 1476–1483 (2009).
  • McLachlan GJ, Bean RW, Peel D. A mixture model-based approach to the clustering of microarray expression data. Bioinformatics18(3), 413–422 (2002).
  • Alon U, Barkai N, Notterman DA et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA96(12), 6745–6750 (1999).
  • Meunier B, Dumas E, Piec I et al. Assessment of hierarchical clustering methodologies for proteomic data mining. J. Proteome Res.6(1), 358–366 (2007).
  • Walker JJ, Terry JR, Lightman SL. Origin of ultradian pulsatility in the hypothalamic–pituitary–adrenal axis. Proc. Biol. Sci.277(1688), 1627–1633 (2010).
  • Bradley AJ, Dinan TG. A systematic review of hypothalamic–pituitary–adrenal axis function in schizophrenia: implications for mortality. J. Psychopharmacol.24(4 Suppl.), 91–118 (2010).
  • Ellenbroek BA, van den Kroonenberg PT, Cools AR. The effects of an early stressful life event on sensorimotor gating in adult rats. Schizophr. Res.30(3), 251–260 (1998).
  • Llorente R, Llorente-Berzal A, Petrosino S et al. Gender-dependent cellular and biochemical effects of maternal deprivation on the hippocampus of neonatal rats: a possible role for the endocannabinoid system. Dev. Neurobiol.68(11), 1334–1347 (2008).
  • Issa G, Wilson C, Terry AV et al. An inverse relationship between cortisol and BDNF levels in schizophrenia: data from human postmortem and animal studies. Neurobiol. Dis.39(3), 327–333 (2010).
  • Koenig JI, Elmer GI, Shepard PD et al. Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav. Brain Res.156(2), 251–261 (2005).
  • Barbier E, Wang JB. Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level. BMC Neurosci.13(10), 132 (2009).
  • Guest PC, Schwarz E, Krishnamurthy D et al. Altered levels of circulating insulin and other neuroendocrine hormones associated with the onset of schizophrenia. Psychoneuroendocrinology36(7), 1092–1096 (2011).
  • Bicikova M, Hampl R, Hill M et al. Neuro- and immunomodulatory steroids and other biochemical markers in drug-naive schizophrenia patients and the effect of treatment with atypical antipsychotics. Neuro. Endocrinol. Lett.32(2), 141–147 (2011).
  • Zhang XY, Zhou DF, Cao LY et al. Cortisol and cytokines in chronic and treatment-resistant patients with schizophrenia: association with psychopathology and response to antipsychotics. Neuropsychopharmacology30(8), 1532–1538 (2005).
  • Rodríguez Echandía EL, Gonzalez AS, Cabrera R et al. A further analysis of behavioral and endocrine effects of unpredictable chronic stress. Physiol. Behav.43(6), 789–795 (1988).
  • Curzon G. 5-Hydroxytryptamine and corticosterone in an animal model of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry13(3–4), 305–310 (1989).
  • Solberg LC, Olson SL, Turek FW et al. Altered hormone levels and circadian rhythm of activity in the WKY rat, a putative animal model of depression. Am. J. Physiol. Regulatory Integrative Comp. Physiol.281(3), R786–R794 (2001).
  • Doig RJ, Mummery RV, Wills MR et al. Plasma cortisol levels in depression. Br. J. Psychiatry112(493), 1263–1267 (1966).
  • Maes M, Calabrese J, Meltzer HY. The relevance of the in- versus outpatient status for studies on HPA-axis in depression: spontaneous hypercortisolism is a feature of major depressed inpatients and not of major depression per se.Prog. Neuropsychopharmacol. Biol. Psychiatry18(3), 503–517 (1994).
  • Strickland PL, Deakin JFW, Percival C et al. Bio-social origins of depression in the community. Interactions between social adversity, cortisol and serotonin neurotransmission. Br. J. Psychiatry180, 168–173 (2002).
  • Allison DB, Newcomer JW, Dunn AL et al. Obesity among those with mental disorders: a National Institute of Mental Health meeting report. Am. J. Prev. Med.36(4), 341–350 (2009).
  • Newcomer JW. Metabolic syndrome and mental illness. Am. J. Manag. Care13(7 Suppl.), S170–S177 (2007).
  • Tsai M-C, Chang C-M, Huang T-L. Changes in high-density lipoprotein and homeostasis model assessment of insulin resistance in medicated schizophrenic patients and healthy controls. Chang Gung Med. J.33(6), 613–618 (2010).
  • McEvoy JP, Meyer JM, Goff DC et al. Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III. Schizophr. Res.80(1), 19–32 (2005).
  • Zhao Z, Ksiezak-Reding H, Riggio S et al. Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr. Res.84(1), 1–14 (2006).
  • Kalinichev M, Rourke C, Daniels AJ et al. Characterisation of olanzapine-induced weight gain and effect of aripiprazole vs olanzapine on body weight and prolactin secretion in female rats. Psychopharmacology182(2), 220–231 (2005).
  • Adeneye AA, Agbaje EO, Olagunju JA. Metformin: an effective attenuator of risperidone-induced insulin resistance hyperglycemia and dyslipidemia in rats. Indian J. Exp. Biol.49(5), 332–338 (2011).
  • Guest PC, Wang L, Harris LW et al. Increased levels of circulating insulin-related peptides in first-onset, antipsychotic naive schizophrenia patients. Mol. Psychiatry.15(2), 118–119 (2010).
  • Buchsbaum MS, Hazlett EA. Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophrenia Bull.24(3), 343–364 (1998).
  • Fan X, Liu E, Pristach C et al. Higher fasting serum insulin levels are associated with a better psychopathology profile in acutely ill non-diabetic inpatients with schizophrenia. Schizophr. Res.86(1–3), 30–35 (2006).
  • Manzanares J, Cantón R, Grande C et al. Amphetamine and chlorpromazine modify cerebral insulin levels in rats. Life Sci.42(1), 21–25 (1988).
  • Li J-M, Kong L-D, Wang Y-M et al. Behavioral and biochemical studies on chronic mild stress models in rats treated with a Chinese traditional prescription Banxia-houpu decoction. Life Sci.74(1), 55–73 (2003).
  • Luo K-R, Hong C-J, Liou Y-J et al. Differential regulation of neurotrophin S100B and BDNF in two rat models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry34(8), 1433–1439 (2010).
  • Rothermundt M, Ponath G, Arolt V. S100B in schizophrenic psychosis. Int. Rev. Neurobiol.59, 445–470 (2004).
  • Winningham-Major F, Staecker JL, Barger SW et al. Neurite extension and neuronal survival activities of recombinant S100β proteins that differ in the content and position of cysteine residues. J. Cell Biol.109(6 Pt 1), 3063–3071 (1989).
  • Van Eldik LJ, Wainwright MS. The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor. Neurol. Neurosci.21(3–4), 97–108 (2003).
  • Barger SW, Van Eldik LJ, Mattson MP. S100β protects hippocampal neurons from damage induced by glucose deprivation. Brain Res.677(1), 167–170 (1995).
  • Fulle S, Mariggiò MA, Belia S et al. Rapid desensitization of PC12 cells stimulated with high concentrations of extracellular S100. Neuroscience89(3), 991–997 (1999).
  • Hu J, Ferreira A, Van Eldik LJ. S100β induces neuronal cell death through nitric oxide release from astrocytes. J. Neurochem.69(6), 2294–2301 (1997).
  • Mariggió MA, Fulle S, Calissano P et al. The brain protein S-100αβ induces apoptosis in PC12 cells. Neuroscience60(1), 29–35 (1994).
  • Whitaker-Azmitia PM, Murphy R, Azmitia EC. Stimulation of astroglial 5-HT1A receptors releases the serotonergic growth factor, protein S-100, and alters astroglial morphology. Brain Res.528(1), 155–158 (1990).
  • Lara DR, Gama CS, Belmonte-de-Abreu P et al. Increased serum S100B protein in schizophrenia: a study in medication-free patients. J. Psychiatr. Res.35(1), 11–14 (2001).
  • Rothermundt M, Missler U, Arolt V et al. Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. Mol. Psychiatry6(4), 445–449 (2001).
  • Rothermundt M, Arolt V, Wiesmann M et al. S-100B is increased in melancholic but not in non-melancholic major depression. J. Affect. Disord.66(1), 89–93 (2001).
  • Gattaz WF, Lara DR, Elkis H et al. Decreased S100-β protein in schizophrenia: preliminary evidence. Schizophr. Res.43(2–3), 91–95 (2000).
  • Wiesmann M, Wandinger KP, Missler U et al. Elevated plasma levels of S-100b protein in schizophrenic patients. Biol. Psychiatry45(11), 1508–1511 (1999).
  • Schroeter ML, Abdul-Khaliq H, Diefenbacher A et al. S100B is increased in mood disorders and may be reduced by antidepressive treatment. NeuroReport13(13), 1675–1678 (2002).
  • Schroeter ML, Abdul-Khaliq H, Krebs M et al. Serum markers support disease-specific glial pathology in major depression. J. Affect. Disord.111(2–3), 271–280 (2008).
  • Ling S-hai, Tang Y-lang, Jiang F et al. Plasma S-100B protein in Chinese patients with schizophrenia: comparison with healthy controls and effect of antipsychotics treatment. J. Psychiatr. Res.41(1–2), 36–42 (2007).
  • Rothermundt M, Falkai P, Ponath G et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol. Psychiatry9(10), 897–899 (2004).
  • Rothermundt M, Ohrmann P, Abel S et al. Glial cell activation in a subgroup of patients with schizophrenia indicated by increased S100B serum concentrations and elevated myo-inositol. Prog. Neuropsychopharmacol. Biol. Psychiatry31(2), 361–364 (2007).
  • Rothermundt M, Ponath G, Glaser T et al. S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. Neuropsychopharmacology29(5), 1004–1011 (2004).
  • Schmitt A, Bertsch T, Henning U et al. Increased serum S100B in elderly, chronic schizophrenic patients: negative correlation with deficit symptoms. Schizophr. Res.80(2–3), 305–313 (2005).
  • Schroeter ML, Abdul-Khaliq H, Frühauf S et al. Serum S100B is increased during early treatment with antipsychotics and in deficit schizophrenia. Schizophr. Res.62(3), 231–236 (2003).
  • Schroeter ML, Abdul-Khaliq H, Krebs M et al. Neuron-specific enolase is unaltered whereas S100B is elevated in serum of patients with schizophrenia – original research and meta-analysis. Psychiatry Res.167(1–2), 66–72 (2009).
  • Steiner J, Bielau H, Bernstein H et al. Increased cerebrospinal fluid and serum levels of S100B in first-onset schizophrenia are not related to a degenerative release of glial fibrillar acidic protein, myelin basic protein and neurone-specific enolase from glia or neurones. J. Neurol. Neurosurg. Psychiatry77(11), 1284–1287 (2006).
  • Edwards JG. Risperidone for schizophrenia. BMJ308(6940), 1311–1312 (1994).
  • Hall P, Coleman J. Flupenthixol in the treatment of schizophrenia. Br. J. Psychiatry120(555), 241–242 (1972).
  • Harkin A. A review of the relevance and validity of olfactory bulbectomy as a model of depression. Clin. Neurosci. Res.3(4–5), 253–262 (2003).
  • López JF, Chalmers DT, Little KY et al. A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol. Psychiatry43(8), 547–573 (1998).
  • Bondi CO, Rodriguez G, Gould GG et al. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology33(2), 320–331 (2008).
  • Toyooka K, Asama K, Watanabe Y et al. Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res.110(3), 249–257 (2002).
  • Grillo RW, Ottoni GL, Leke R et al. Reduced serum BDNF levels in schizophrenic patients on clozapine or typical antipsychotics. J. Psychiatr. Res.41(1–2), 31–35 (2007).
  • Rizos EN, Rontos I, Laskos E et al. Investigation of serum BDNF levels in drug-naive patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry32(5), 1308–1311 (2008).
  • Karege F, Perret G, Bondolfi G et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res.109(2), 143–148 (2002).
  • Shimizu E, Hashimoto K, Okamura N et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry54(1), 70–75 (2003).
  • Angelucci F, Brenè S, Mathé AA. BDNF in schizophrenia, depression and corresponding animal models. Mol. Psychiatry10(4), 345–352 (2005).
  • Sen S. Serum BDNF, depression and anti-depressant medications: meta-analyses and implications. Biol. Psychiatry64(6), 527–532 (2008).
  • Koolschijn PCMP, Van Haren NEM, Bakker SC et al. Effects of brain-derived neurotrophic factor Val66Met polymorphism on hippocampal volume change in schizophrenia. Hippocampus20(9), 1010–1017 (2010).
  • Tan YL, Zhou DF, Cao LY et al. Decreased BDNF in serum of patients with chronic schizophrenia on long-term treatment with antipsychotics. Neurosci. Lett.382(1–2), 27–32 (2005).
  • Hori H, Yoshimura R, Yamada Y et al. Effects of olanzapine on plasma levels of catecholamine metabolites, cytokines, and brain-derived neurotrophic factor in schizophrenic patients. Int. Clin. Psychopharmacol.22(1), 21–27 (2007).
  • Lee B-H, Kim Y-K. Increased plasma brain-derived neurotropic factor, not nerve growth factor-β, in schizophrenia patients with better response to risperidone treatment. Neuropsychobiology59(1), 51–58 (2009).
  • Yoshimura R, Hori H, Sugita A et al. Treatment with risperidone for 4 weeks increased plasma 3-methoxy-4-hydroxypnenylglycol (MHPG) levels, but did not alter plasma brain-derived neurotrophic factor (BDNF) levels in schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry31(5), 1072–1077 (2007).
  • Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry134, 382–389 (1979).
  • Hamilton M. Rating depressive patients. J. Clin. Psychiatry41(12 Pt 2), 21–24 (1980).
  • Brunoni AR, Lopes M, Fregni F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int. J. Neuropsychopharmacol.11(08), 1169–1180 (2008).
  • Lee B-H, Kim H, Park S-H et al. Decreased plasma BDNF level in depressive patients. J. Affect. Disord.101(1–3), 239–244 (2007).
  • Dell’Osso L, Del Debbio A, Veltri A et al. Associations between brain-derived neurotrophic factor plasma levels and severity of the illness, recurrence and symptoms in depressed patients. Neuropsychobiology62(4), 207–212 (2010).
  • Kim Y-K, Lee H-P, Won S-D et al. Low plasma BDNF is associated with suicidal behavior in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry31(1), 78–85 (2007).
  • Elfving B, Plougmann PH, Müller HK et al. Inverse correlation of brain and blood BDNF levels in a genetic rat model of depression. Int. J. Neuropsychopharmacol.13(5), 563–572 (2010).
  • Aono T, Shioji T, Shoda T et al. The initiation of human lactation and prolactin response to suckling. J. Clin. Endocrinol. Metab.44(6), 1101–1106 (1977).
  • Tyson JE, Khojandi M, Huth J et al. The influence of prolactin secretion on human lactation. J. Clin. Endocrinol. Metab.40(5), 764–773 (1975).
  • Merkle CJ, Schuler LA, Schaeffer RC et al. Structural and functional effects of high prolactin levels on injured endothelial cells: evidence for an endothelial prolactin receptor. Endocrine13(1), 37–46 (2000).
  • Lkhider M, Seddiki T, Ollivier-Bousquet M. Prolactin and its cleaved 16 kDa fragment. Med. Sci. (Paris)26(12), 1049–1055 (2010).
  • Zhang X, Zhoua DF, Yuanb CL et al. Risperidone-induced increase in serum prolactin is correlated with positive symptom improvement in chronic schizophrenia. Psychiatry Res.109(3), 297–302 (2002).
  • Segal M, Avital A, Berstein S et al. Prolactin and estradiol serum levels in unmedicated male paranoid schizophrenia patients. Prog. Neuropsychopharmacol. Biol. Psychiatry31(2), 378–382 (2007).
  • Segal M, Avital A, Rojas M et al. Serum prolactin levels in unmedicated first-episode and recurrent schizophrenia patients: a possible marker for the disease’s subtypes. Psychiatry Res.127(3), 227–235 (2004).
  • Kapur S. Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am. J. Psychiatry157(4), 514–520 (2000).
  • Kirkpatrick B, Buchanan RW, Maeda K et al. Effect of neuroleptic withdrawal on plasma prolactin: a possible marker of receptor adaptation. Biol. Psychiatry26(2), 131–138 (1989).
  • Siever LJ, Murphy DL, Slater S et al. Plasma prolactin changes following fenfluramine in depressed patients compared with controls: an evaluation of central serotonergic responsivity in depression. Life Sci.34(11), 1029–1039 (1984).
  • Maeda K, Kato Y, Ohgo S et al. Growth hormone and prolactin release after injection of thyrotropin-releasing hormone in patients with depression. J. Clin. Endocrinol. Metab.40(3), 501–505 (1975).
  • Park SB, Williamson DJ, Cowen PJ. 5-HT neuroendocrine function in major depression: prolactin and cortisol responses to D-fenfluramine. Psychol. Med.26(6), 1191–1196 (1996).
  • O’Keane V, McLoughlin D, Dinan TG. D-fenfluramine-induced prolactin and cortisol release in major depression: response to treatment. J. Affect. Disord.26(3), 143–150 (1992).
  • Jones CA, Watson DJG, Fone K. Animal models of schizophrenia. Br. J. Pharmacol. doi:10.1111/j.1476-5381.2011.01386.x. (2011) (Epub ahead of print).
  • Lozovsky D, F Saller C, A Bayorh M et al. Effects of phencyclidine on rat prolactin, dopamine receptor and locomotor activity. Life Sci.32(24), 2725–2731 (1983).
  • Pechnick RN, George R, Poland RE et al. Characterization of the effects of the acute and chronic administration of phencyclidine on the release of adrenocorticotropin, corticosterone and prolactin in the rat: evidence for the differential development of tolerance. J. Pharmacol. Exp. Ther.250(2), 534–540 (1989).
  • Pechnick RN, George R, Lee RJ et al. The effects of the acute administration of phencyclidine hydrochloride (PCP) on the release of corticosterone, growth hormone and prolactin in the rat. Life Sci.38(3), 291–296 (1986).
  • Lozovsky D, Sailer CF, Bayorh MA et al. Effects of phencyclidine on rat prolactin, dopamine receptor and locomotor activity. Life Sci.32(24), 2725–2731 (1983).
  • Ben-Jonathan N. Dopamine: a prolactin-inhibiting hormone. Endocr. Rev.6(4), 564–589 (1985).
  • Clemens JA, Sawyer BD, Cerimele B. Further evidence that serotonin is a neurotransmitter involved in the control of prolactin secretion. Endocrinology100(3), 692–698 (1977).
  • Hyde JF. Effects of phencyclidine on 5-hydroxytryptophan- and suckling-induced prolactin release. Brain Res.573(2), 204–208 (1992).
  • Meltzer HY, Simonovic M, Gudelsky GA. Phencyclidine-induced inhibition of rat prolactin secretion: increased portal blood dopamine. Eur. J. Pharmacol.110(1), 143–146 (1985).
  • Ohta C, Yasui-Furukori N, Furukori H et al. The effect of smoking status on the plasma concentration of prolactin already elevated by risperidone treatment in schizophrenia patients. Prog. Neuropsychopharmacol. Biol. Psychiatry35(2), 573–576 (2011).
  • Melkersson KI, Hulting A-L, Rane AJ. Dose requirement and prolactin elevation of antipsychotics in male and female patients with schizophrenia or related psychoses. Br. J. Clin. Pharmacol.51(4), 317–324 (2002).
  • González AS, Rodríguez Echandía EL, Cabrera R et al. Neonatal chronic stress induces subsensitivity to chronic stress in adult rats. I. Effects on forced swim behavior and endocrine responses. Physiol. Behav.47(4), 735–741 (1990).
  • Telner JI, Merali Z, Singhal RL. Time-dependent changes in plasma prolactin level and stress controllability in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry6(4–6), 459–462 (1982).
  • Zhang Z, Datta G, Zhang Y et al. Apolipoprotein A-I mimetic peptide treatment inhibits inflammatory responses and improves survival in septic rats. Am. J. Physiol. Heart Circ. Physiol.297(2), H866–H873 (2009).
  • Shor R, Wainstein J, Oz D et al. Low HDL levels and the risk of death, sepsis and malignancy. Clin. Res. Cardiol.97(4), 227–233 (2008).
  • Wu A, Hinds CJ, Thiemermann C. High-density lipoproteins in sepsis and septic shock: metabolism, actions, and therapeutic applications. Shock21(3), 210–221 (2004).
  • Huang JT, Wang L, Prabakaran S et al. Independent protein-profiling studies show a decrease in apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues. Mol. Psychiatry13(12), 1118–1128 (2008).
  • Yang Y, Wan C, Li H et al. Altered levels of acute phase proteins in the plasma of patients with schizophrenia. Anal. Chem.78(11), 3571–3576 (2006).
  • La YJ, Wan CL, Zhu H et al. Decreased levels of apolipoprotein A-I in plasma of schizophrenic patients. J. Neural. Transm.114(5), 657–663 (2007).
  • Sasaki J, Kumagae G, Sata T et al. Decreased concentration of high density lipoprotein cholesterol in schizophrenic patients treated with phenothiazines. Atherosclerosis51(2–3), 163–169 (1984).
  • Olusi SO, Fido AA. Serum lipid concentrations in patients with major depressive disorder. Biol. Psychiatry40(11), 1128–1131 (1996).
  • Martins-De-Souza D, Wobrock T, Zerr I et al. Different apolipoprotein E, apolipoprotein A1 and prostaglandin-H2 D-isomerase levels in cerebrospinal fluid of schizophrenia patients and healthy controls. World J. Biol. Psychiatry11(5), 719–728 (2010).
  • Saari K, Jokelainen J, Veijola J et al. Serum lipids in schizophrenia and other functional psychoses: a general population Northern Finland 1966 birth cohort survey. Acta Psychiatr. Scand.110(4), 279–285 (2004).
  • Carboni L, Becchi S, Piubelli C et al. Early-life stress and antidepressants modulate peripheral biomarkers in a gene-environment rat model of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry34(6), 1037–1048 (2010).
  • Elfving B, Plougmann PH, Wegener G. Detection of brain-derived neurotrophic factor (BDNF) in rat blood and brain preparations using ELISA: pitfalls and solutions. J. Neurosci. Methods187(1), 73–77 (2010).
  • Trajkovska V, Marcussen AB, Vinberg M et al. Measurements of brain-derived neurotrophic factor: methodological aspects and demographical data. Brain Res. Bull.73(1–3), 143–149 (2007).
  • Zhang XY, Zhou DF, Qi LY et al. Superoxide dismutase and cytokines in chronic patients with schizophrenia: association with psychopathology and response to antipsychotics. Psychopharmacology204(1), 177–184 (2009).
  • Chrapusta SJ, Egan MF, Wyatt RJ et al. Neonatal ventral hippocampal damage modifies serum corticosterone and dopamine release responses to acute footshock in adult Sprague–Dawley rats. Synapse47(4), 270–277 (2003).
  • Lammers CH, Garcia-Borreguero D, Schmider J et al. Combined dexamethasone/corticotropin-releasing hormone test in patients with schizophrenia and in normal controls: II. Biol. Psychiatry38(12), 803–807 (1995).
  • Kudoh A, Ishihara H, Matsuki A. Pituitary-adrenal and parasympathetic function in chronic schizophrenic patients with postoperative ileus or hypotension. Neuropsychobiology39(3), 125–130 (1999).
  • Kaneda Y, Fujii A. Effects of chronic neuroleptic administration on the hypothalamo–pituitary–gonadal axis of male schizophrenics. Prog. Neuropsychopharmacol. Biol. Psychiatry24(2), 251–258 (2000).
  • Roy A, Pickar D, Doran A et al. The corticotropin-releasing hormone stimulation test in chronic schizophrenia. Am. J. Psychiatry143(11), 1393–1397 (1986).
  • Breier A, Wolkowitz OM, Doran AR et al. Neurobiological effects of lumbar puncture stress in psychiatric patients and healthy volunteers. Psychiatry Res.25(2), 187–194 (1988).
  • Tejedor-Real P, Sahagún M, Biguet NF et al. Neonatal handling prevents the effects of phencyclidine in an animal model of negative symptoms of schizophrenia. Biol. Psychiatry61(7), 865–872 (2007).
  • Singh B, Bera NK, Nayak CR et al. Decreased serum levels of interleukin-2 and interleukin-6 in Indian Bengalee schizophrenic patients. Cytokine47(1), 1–5 (2009).
  • Bradford M, Law MH, Megson IL et al. The functional significance of the TGM2 gene in schizophrenia: a correlation of SNPs and circulating IL-2 levels. J. Neuroimmunol.232(1–2), 5–7 (2011).
  • Borrell J, Vela JM, Arévalo-Martin A et al. Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology26(2), 204–215 (2002).
  • Johnsen E, Gjestad R, Kroken RA et al. Cardiovascular risk in patients admitted for psychosis compared with findings from a population-based study. Nord. J. Psychiatry65(3), 192–202 (2011).
  • Sarandol A, Kirli S, Akkaya C et al. Coronary artery disease risk factors in patients with schizophrenia: effects of short term antipsychotic treatment. J. Psychopharmacol.21(8), 857–863 (2007).
  • Padurariu M, Ciobica A, Dobrin I et al. Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci. Lett.479(3), 317–320 (2010).
  • Al-Chalabi BM, Thanoon IAJ, Ahmed FA. Potential effect of olanzapine on total antioxidant status and lipid peroxidation in schizophrenic patients. Neuropsychobiology59(1), 8–11 (2009).
  • Rao ML, Gross G, Huber G. Altered interrelationship of dopamine, prolactin, thyrotropin and thyroid hormone in schizophrenic patients. Eur. Arch. Psychiatry Neurol. Sci.234(1), 8–12 (1984).
  • Asada M, Ebihara S, Numachi Y et al. Reduced tumor growth in a mouse model of schizophrenia, lacking the dopamine transporter. Int. J. Cancer123(3), 511–518 (2008).
  • Bechter K, Reiber H, Herzog S et al. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood-CSF barrier dysfunction. J. Psychiatr. Res.44(5), 321–330 (2010).
  • Mitsuhashi S, Fukushima T, Tomiya M et al. Determination of kynurenine levels in rat plasma by high-performance liquid chromatography with pre-column fluorescence derivatization. Anal. Chim. Acta584(2), 315–321 (2007).
  • Ravikumar A, Deepadevi KV, Arun P et al. Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders. Neurology India48(3), 231–238 (2000).
  • Rao ML, Gross G, Strebel B, Bräunig P, Huber G, Klosterkötter J. Serum amino acids, central monoamines, and hormones in drug-naive, drug-free, and neuroleptic-treated schizophrenic patients and healthy subjects. Psychiatry Res.34(3), 243–257 (1990).
  • Macciardi F, Lucca A, Catalano M et al. Amino acid patterns in schizophrenia: some new findings. Psychiatry Res.32(1), 63–70 (1990).
  • Tomiya M, Fukushima T, Kawai J et al. Alterations of plasma and cerebrospinal fluid glutamate levels in rats treated with the N-methyl-D-aspartate receptor antagonist, ketamine. Biomed. Chromatogr.20(6–7), 628–633 (2006).
  • Charlton BG, Leake A, Wright C et al. A combined study of cortisol, ACTH and dexamethasone concentrations in major depression. Multiple time-point sampling. Br. J. Psychiatry150(6), 791–796 (1987).
  • Linkowski P, Mendlewicz J, Leclercq R et al. The 24-hour profile of adrenocorticotropin and cortisol in major depressive illness. J. Clin. Endocrinol. Metab.61(3), 429–438 (1985).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.