286
Views
35
CrossRef citations to date
0
Altmetric
Theme: Cancer/Oncology Diagnostics - Review

BRAF mutation testing in clinical practice

&
Pages 127-138 | Published online: 09 Jan 2014

References

  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417(6892), 949–954 (2002).
  • Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell6(4), 313–319 (2004).
  • Di Nicolantonio F, Martini M, Molinari F et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol.26(35), 5705–5712 (2008).
  • Yokota T, Ura T, Shibata N et al.BRAF mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. Br. J. Cancer104(5), 856–862 (2011).
  • Flaherty KT, Puzanov I, Kim KB et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med.363(9), 809–819 (2010).
  • Nikiforov YE. Molecular analysis of thyroid tumors. Mod. Pathol.24(Suppl. 2), S34–S43 (2011).
  • Takezawa K, Okamoto I, Yonesaka K et al. Sorafenib inhibits non-small cell lung cancer cell growth by targeting B-RAF in KRAS wild-type cells and C-RAF in KRAS mutant cells. Cancer Res.69(16), 6515–6521 (2009).
  • Singer G, Oldt R 3rd, Cohen Y et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J. Natl Cancer Inst.95(6), 484–486 (2003).
  • Tiacci E, Trifonov V, Schiavoni G et al.BRAF mutations in hairy-cell leukemia. N. Engl. J. Med.364(24), 2305–2315 (2011).
  • Lupi C, Giannini R, Ugolini C et al. Association of BRAFV600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.92(11), 4085–4090 (2007).
  • Barnier JV, Papin C, Eychene A, Lecoq O, Calothy G. The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression. J. Biol. Chem.270(40), 23381–23389 (1995).
  • Valluet A, Hmitou I, Davis S et al.B-raf alternative splicing is dispensable for development but required for learning and memory associated with the hippocampus in the adult mouse. PLoS One5(12), e15272 (2010).
  • Kolch W. Meaningful relationships: the regulation of the RAS/Raf/MEK/ERK pathway by protein interactions. Biochem. J.351(Pt 2), 289–305 (2000).
  • Garnett MJ, Rana S, Paterson H, Barford D, Marais R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell20(6), 963–969 (2005).
  • Hmitou I, Druillennec S, Valluet A, Peyssonnaux C, Eychene A. Differential regulation of B-raf isoforms by phosphorylation and autoinhibitory mechanisms. Mol. Cell Biol.27(1), 31–43 (2007).
  • Huser M, Luckett J, Chiloeches A et al. MEK kinase activity is not necessary for Raf-1 function. EMBO J.20(8), 1940–1951 (2001).
  • Wan PT, Garnett MJ, Roe SM et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell116(6), 855–867 (2004).
  • Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J.18(8), 2137–2148 (1999).
  • Heidorn SJ, Milagre C, Whittaker S et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell140(2), 209–221 (2010).
  • Gray-Schopfer VC, Karasarides M, Hayward R, Marais R. Tumor necrosis factor-α blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res.67(1), 122–129 (2007).
  • Champion KJ, Bunag C, Estep AL et al. Germline mutation in BRAF codon 600 is compatible with human development: de novop.V600G mutation identified in a patient with CFC syndrome. Clin. Genet.79(5), 468–474 (2011).
  • Ritt DA, Monson DM, Specht SI, Morrison DK. Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol. Cell Biol.30(3), 806–819 (2010).
  • Adeniran AJ, Theoharis C, Hui P et al. Reflex BRAF testing in thyroid fine-needle aspiration biopsy with equivocal and positive interpretation: a prospective study. Thyroid21(7), 717–723 (2011).
  • Hay R, Macrae E, Barber D, Khalil M, Demetrick DJ. BRAF mutations in melanocytic lesions and papillary thyroid carcinoma samples identified using melting curve analysis of polymerase chain reaction products. Arch. Pathol. Lab Med.131(9), 1361–1367 (2007).
  • Rowe LR, Bentz BG, Bentz JS. Detection of BRAFV600E activating mutation in papillary thyroid carcinoma using PCR with allele-specific fluorescent probe melting curve analysis. J. Clin. Pathol.60(11), 1211–1215 (2007).
  • Shackelford W, Deng S, Murayama K, Wang J. A new technology for mutation detection. Ann. NY Acad. Sci.1022, 257–262 (2004).
  • Arruda VR, Von Zuben PM, Annichino-Bizzachi JM, Costa FF. Rapid detection of factor V Leiden (FVQ506) by non-radioactive single strand conformation polymorphism (SSCP). Sangre41(5), 379–381 (1996).
  • Dillon D, Zheng K, Costa J. Rapid, efficient genotyping of clinical tumor samples by laser-capture microdissection/PCR/SSCP. Expert Mol. Pathol.70(3), 195–200 (2001).
  • Dillon D, Zheng K, Negin B, Costa J. Detection of Ki-ras and p53 mutations by laser capture microdissection/PCR/SSCP. Methods Mol. Biol.293, 57–67 (2005).
  • Tan YH, Liu Y, Eu KW et al. Detection of BRAFV600E mutation by pyrosequencing. Pathology40(3), 295–298 (2008).
  • Spittle C, Ward MR, Nathanson KL et al. Application of a BRAF pyrosequencing assay for mutation detection and copy number analysis in malignant melanoma. J. Mol. Diagn.9(4), 464–471 (2007).
  • Pinzani P, Santucci C, Mancini I et al.BRAFV600E detection in melanoma is highly improved by COLD-PCR. Clin. Chim. Acta412(11–12), 901–905 (2011).
  • Mancini I, Santucci C, Sestini R et al. The use of COLD-PCR and high-resolution melting analysis improves the limit of detection of KRAS and BRAF mutations in colorectal cancer. J. Mol. Diagn.12(5), 705–711 (2010).
  • Milbury CA, Li J, Liu P, Makrigiorgos GM. COLD-PCR: improving the sensitivity of molecular diagnostics assays. Expert Rev. Mol. Diagn.11(2), 159–169 (2011).
  • Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res.63(7), 1454–1457 (2003).
  • Pollock PM, Harper UL, Hansen KS et al. High frequency of BRAF mutations in nevi. Nat. Genet.33(1), 19–20 (2003).
  • Bauer J, Buttner P, Wiecker TS, Luther H, Garbe C. Risk factors of incident melanocytic nevi: a longitudinal study in a cohort of 1,232 young German children. Int. J. Cancer115(1), 121–126 (2005).
  • Maldonado JL, Fridlyand J, Patel H et al. Determinants of BRAF mutations in primary melanomas. J. Natl Cancer Inst.95(24), 1878–1890 (2003).
  • Yazdi AS, Palmedo G, Flaig MJ et al. Mutations of the BRAF gene in benign and malignant melanocytic lesions. J. Invest. Dermatol.121(5), 1160–1162 (2003).
  • Curtin JA, Fridlyand J, Kageshita T et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med.353(20), 2135–2147 (2005).
  • Lang J, Boxer M, Mackie R. Absence of exon 15 BRAF germline mutations in familial melanoma. Hum. Mutat.21(3), 327–330 (2003).
  • Meyer P, Klaes R, Schmitt C, Boettger MB, Garbe C. Exclusion of BRAFV599E as a melanoma susceptibility mutation. Int. J. Cancer106(1), 78–80 (2003).
  • Edlundh-Rose E, Egyhazi S, Omholt K et al.NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res.16(6), 471–478 (2006).
  • Liu W, Kelly JW, Trivett M et al. Distinct clinical and pathological features are associated with the BRAF(T1799A(V600E)) mutation in primary melanoma. J. Invest. Dermatol.127(4), 900–905 (2007).
  • Landi MT, Bauer J, Pfeiffer RM et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science313(5786), 521–522 (2006).
  • Bauer J, Buttner P, Murali R et al.BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res.24(2), 345–351 (2011).
  • Michaloglou C, Vredeveld LC, Soengas MS et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature436(7051), 720–724 (2005).
  • Dankort D, Curley DP, Cartlidge RA et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat. Genet.41(5), 544–552 (2009).
  • Kefford R, Arkenau H, Brown MP et al. Phase 1/2 study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase in patients with metastatic melanoma and other solid tumors. J. Clin. Oncol.28(15S) (2010) (Abstract 8503).
  • Infante JR, Fecher LA, Nallapareddy S et al. Safety and efficacy results from the first-in-human study of the oral MEK1/2 nhibitor GSK112020212. J. Clin. Oncol.28(15 Suppl.), 2503 (2010).
  • Emery CM, Vijayendran KG, Zipser MC et al.MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc. Natl Acad. Sci. USA106(48), 20411–20416 (2009).
  • Montagut C, Sharma SV, Shioda T et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res.68(12), 4853–4861 (2008).
  • Nazarian R, Shi H, Wang Q et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature468(7326), 973–977 (2010).
  • Villanueva J, Vultur A, Lee JT et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell18(6), 683–695 (2010).
  • Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, Engelman JA. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAFV600E mutation. Sci. Signal3(149), ra84 (2010).
  • Little AS, Balmanno K, Sale MJ et al. Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells. Sci. Signal4(166), ra17 (2011).
  • Kwong LN, Chin L. The brothers RAF. Cell140(2), 180–182 (2010).
  • Poulikakos PI, Persaud Y, Janakiraman M et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature480(7377), 387–390 (2011).
  • Cohen Y, Xing M, Mambo E et al.BRAF mutation in papillary thyroid carcinoma. J. Natl Cancer Inst.95(8), 625–627 (2003).
  • Xing M, Vasko V, Tallini G et al.BRAF T1796A transversion mutation in various thyroid neoplasms. J. Clin. Endocrinol. Metab.89(3), 1365–1368 (2004).
  • Nikiforova MN, Kimura ET, Gandhi M et al.BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab.88(11), 5399–5404 (2003).
  • Finkelstein ALG, Hui P, Prasad A et al. Papillary thyroid carcinomas with and without BRAFV600E mutations are morphologically distinct. Histopathology (2011) (In Press).
  • Hishinuma A, Fukata S, Kakudo K, Murata Y, Ieiri T. High incidence of thyroid cancer in long-standing goiters with thyroglobulin mutations. Thyroid15(9), 1079–1084 (2005).
  • Ciampi R, Knauf JA, Kerler R et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Invest.115(1), 94–101 (2005).
  • Xing M, Westra WH, Tufano RP et al.BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J. Clin. Endocrinol. Metab.90(12), 6373–6379 (2005).
  • Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr. Rev.28(7), 742–762 (2007).
  • Namba H, Nakashima M, Hayashi T et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab.88(9), 4393–4397 (2003).
  • Bansal M, Nikiforow YE. B-Raf mutations in papillary thyroid carcinoma: diagnostic role, porgnostic implications, and a guide for clinical management. Path. Case Rev.15(4), 5 (2010).
  • Leboeuf R, Baumgartner JE, Benezra M et al.BRAFV600E mutation is associated with preferential sensitivity to mitogen-activated protein kinase kinase inhibition in thyroid cancer cell lines. J. Clin. Endocrinol. Metab.93(6), 2194–2201 (2008).
  • Vasko V, Hu S, Wu G et al. High prevalence and possible de novo formation of BRAF mutation in metastasized papillary thyroid cancer in lymph nodes. J. Clin. Endocrinol. Metab.90(9), 5265–5269 (2005).
  • Jo YS, Li S, Song JH et al. Influence of the BRAFV600E mutation on expression of vascular endothelial growth factor in papillary thyroid cancer. J. Clin. Endocrinol. Metab.91(9), 3667–3670 (2006).
  • Adeniran AJ, Hui P, Chhieng D, Prasad ML, Schofield K, Theoharis C. BRAF mutation testing of thyroid FNA specimens enhances predictability of malignancy in thyroid follicular lesions of undetermined significance. Acta Cytologica55(6), 570–575 (2011).
  • Greaves TS, Olvera M, Florentine BD et al. Follicular lesions of thyroid: a 5-year fine-needle aspiration experience. Cancer90(6), 335–341 (2000).
  • Sclabas GM, Staerkel GA, Shapiro SE et al. Fine-needle aspiration of the thyroid and correlation with histopathology in a contemporary series of 240 patients. Am. J. Surg.186(6), 702–709; discussion 709–710 (2003).
  • Nikiforov YE, Steward DL, Robinson-Smith TM et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J. Clin. Endocrinol. Metab.94(6), 2092–2098 (2009).
  • Rowe LR, Bentz BG, Bentz JS. Utility of BRAFV600E mutation detection in cytologically indeterminate thyroid nodules. Cytojournal3, 10 (2006).
  • Jo YS, Huang S, Kim YJ et al. Diagnostic value of pyrosequencing for the BRAFV600E mutation in ultrasound-guided fine-needle aspiration biopsy samples of thyroid incidentalomas. Clin. Endocrinol.70(1), 139–144 (2009).
  • Durante C, Puxeddu E, Ferretti E et al.BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J. Clin. Endocrinol. Metab.92(7), 2840–2843 (2007).
  • Liu D, Liu Z, Condouris S, Xing M. BRAFV600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J. Clin. Endocrinol. Metab.92(6), 2264–2271 (2007).
  • Espinosa AV, Porchia L, Ringel MD. Targeting BRAF in thyroid cancer. Br. J. Cancer96(1), 16–20 (2007).
  • Salerno P, De Falco V, Tamburrino A et al. Cytostatic activity of adenosine triphosphate-competitive kinase inhibitors in BRAF mutant thyroid carcinoma cells. J. Clin. Endocrinol. Metab.95(1), 450–455 (2010).
  • Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch. Pathol. Lab Med.135(5), 569–577 (2011).
  • Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature418(6901), 934 (2002).
  • Lubomierski N, Plotz G, Wormek M et al.BRAF mutations in colorectal carcinoma suggest two entities of microsatellite-unstable tumors. Cancer104(5), 952–961 (2005).
  • Domingo E, Laiho P, Ollikainen M et al. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J. Med. Genet.41(9), 664–668 (2004).
  • Bellizzi AM, Frankel WL. Colorectal cancer due to deficiency in DNA mismatch repair function: a review. Adv. Anat. Pathol.16(6), 405–417 (2009).
  • Kawaguchi M, Yanokura M, Banno K et al. Analysis of a correlation between the BRAFV600E mutation and abnormal DNA mismatch repair in patients with sporadic endometrial cancer. Int. J. Oncol.34(6), 1541–1547 (2009).
  • Bouzourene H, Hutter P, Losi L, Martin P, Benhattar J. Selection of patients with germline MLH1 mutated Lynch syndrome by determination of MLH1 methylation and BRAF mutation. Fam. Cancer9(2), 167–172 (2010).
  • Hutchins G, Southward K, Handley K et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J. Clin. Oncol.29(10), 1261–1270 (2011).
  • Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J. Clin. Oncol.28(7), 1254–1261 (2010).
  • Tol J, Nagtegaal ID, Punt CJ. BRAF mutation in metastatic colorectal cancer. N. Engl. J. Med.361(1), 98–99 (2009).
  • Richman SD, Seymour MT, Chambers P et al.KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J. Clin. Oncol.27(35), 5931–5937 (2009).
  • Van Cutsem E, Kohne CH, Lang I et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol.29(15), 2011–2019 (2011).
  • Lee JW, Yoo NJ, Soung YH et al.BRAF mutations in non-Hodgkin’s lymphoma. Br. J. Cancer89(10), 1958–1960 (2003).
  • Naoki K, Chen TH, Richards WG, Sugarbaker DJ, Meyerson M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res.62(23), 7001–7003 (2002).
  • Brose MS, Volpe P, Feldman M et al.BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res.62(23), 6997–7000 (2002).
  • Vang R, Shih Ie M, Kurman RJ. Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv. Anat. Pathol.16(5), 267–282 (2009).
  • Wong KK, Tsang YT, Deavers MT et al.BRAF mutation is rare in advanced-stage low-grade ovarian serous carcinomas. Am. J. Pathol.177(4), 1611–1617 (2010).
  • Vereczkey I, Serester O, Dobos J et al. Molecular characterization of 103 ovarian serous and mucinous tumors. Pathol. Oncol. Res.17(3), 551–559 (2011).
  • Corcoran RB, Settleman J, Engelman JA. Potential therapeutic strategies to overcome acquired resistance to BRAF or MEK inhibitors in BRAF mutant cancers. Oncotarget2(4), 336–346 (2011).
  • Ribas A, Flaherty KT. BRAF targeted therapy changes the treatment paradigm in melanoma. Nat. Rev. Clin. Oncol.8(7), 426–433 (2011).
  • Arkenau HT, Kefford R, Long GV. Targeting BRAF for patients with melanoma. Br. J. Cancer104(3), 392–398 (2011).
  • Chapman PB, Hauschild A, Robert C et al. Improved survival with vemurafenib in melanoma with BRAFV600E mutation. N. Engl. J. Med.364(26), 2507–2516 (2011).
  • Loughrey MB, Waring PM, Tan A et al. Incorporation of somatic BRAF mutation testing into an algorithm for the investigation of hereditary non-polyposis colorectal cancer. Fam. Cancer6(3), 301–310 (2007).
  • Kebebew E, Weng J, Bauer J et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann. Surg.246(3), 466–470; discussion 470–461 (2007).
  • Xing M, Clark D, Guan H et al.BRAF mutation testing of thyroid fine-needle aspiration biopsy specimens for preoperative risk stratification in papillary thyroid cancer. J. Clin. Oncol.27(18), 2977–2982 (2009).
  • Ball DW, Jin N, Rosen DM et al. Selective growth inhibition in BRAF mutant thyroid cancer by the mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244. J. Clin. Endocrinol. Metab.92(12), 4712–4718 (2007).
  • Paik PK, Arcila ME, Fara M et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J. Clin. Oncol.29(15), 2046–2051 (2011).
  • Pratilas CA, Solit DB. Therapeutic strategies for targeting BRAF in human cancer. Rev. Recent Clin. Trials2(2), 121–134 (2007).
  • Kim IJ, Park JH, Kang HC et al. Mutational analysis of BRAF and K-ras in gastric cancers: absence of BRAF mutations in gastric cancers. Hum. Genet.114(1), 118–120 (2003).
  • Lee SH, Lee JW, Soung YH et al.BRAF and KRAS mutations in stomach cancer. Oncogene22(44), 6942–6945 (2003).
  • Feng YZ, Shiozawa T, Miyamoto T et al.BRAF mutation in endometrial carcinoma and hyperplasia: correlation with KRAS and p53 mutations and mismatch repair protein expression. Clin. Cancer Res.11(17), 6133–6138 (2005).
  • Moreno -Bueno G, Sanchez-Estevez C, Palacios J, Hardisson D, Shiozawa T. Low frequency of BRAF mutations in endometrial and in cervical carcinomas. Clin. Cancer Res.12(12), 3865; author reply 3865–3866 (2006).
  • Pappa KI, Choleza M, Markaki S et al. Consistent absence of BRAF mutations in cervical and endometrial cancer despite KRAS mutation status. Gynecol. Oncol.100(3), 596–600 (2006).
  • Yu J, Deshmukh H, Gutmann RJ et al. Alterations of BRAF and HIPK2 loci predominate in sporadic pilocytic astrocytoma. Neurology73(19), 1526–1531 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.