63
Views
7
CrossRef citations to date
0
Altmetric
Theme: Genetic & Genomics Applications - Review

Functional drug–gene interactions in lung cancer

&
Pages 291-302 | Published online: 09 Jan 2014

References

  • Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature458(7239), 719–724 (2009).
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell144(5), 646–674 (2011).
  • Marshall E. Cancer research and the $90 billion metaphor. Science331(6024), 1540–1541 (2011).
  • Herbst RS, Heymach JV, Lippman SM. Lung cancer. N. Engl. J. Med.359(13), 1367–1380 (2008).
  • Sutherland KD, Proost N, Brouns I, Adriaensen D, Song JY, Berns A. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell19(6), 754–764 (2011).
  • Richardson GE, Johnson BE. The biology of lung cancer. Semin. Oncol.20(2), 105–127 (1993).
  • Bergh JC. Gene amplification in human lung cancer. The Myc family genes and other proto-oncogenes and growth factor genes. Am. Rev. Respir. Dis.142(6 Pt 2), S20–S26 (1990).
  • Kim YH, Girard L, Giacomini CP et al. Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of Myc family gene amplification. Oncogene25(1), 130–138 (2006).
  • Wistuba II, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin. Oncol.28(2 Suppl. 4), S3–S13 (2001).
  • Pei J, Balsara BR, Li W et al. Genomic imbalances in human lung adenocarcinomas and squamous cell carcinomas. Genes Chromosomes Cancer31(3), 282–287 (2001).
  • Garnis C, Lockwood WW, Vucic E et al. High resolution analysis of non-small cell lung cancer cell lines by whole genome tiling path array CGH. Int. J. Cancer118(6), 1556–1564 (2006).
  • Lacroix L, Commo F, Soria JC. Gene expression profiling of non-small-cell lung cancer. Expert Rev. Mol. Diagn.8(2), 167–178 (2008).
  • De Bono JS, Ashworth A. Translating cancer research into targeted therapeutics. Nature467(7315), 543–549 (2010).
  • Zhu J, Ding J, Ding F. Tumor stem cell, or its niche, which plays a primary role in tumorigenesis? World J. Gastrointest. Oncol.2(5), 218–221 (2010).
  • Subramanian J, Simon R. Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J. Natl Cancer Inst.102(7), 464–474 (2010).
  • Chen HY, Yu SL, Chen CH et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N. Engl. J. Med.356(1), 11–20 (2007).
  • Zhu CQ, Ding K, Strumpf D et al. Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. J. Clin. Oncol.28(29), 4417–4424 (2010).
  • Breathnach OS, Freidlin B, Conley B et al. Twenty-two years of Phase 3 trials for patients with advanced non-small-cell lung cancer: sobering results. J. Clin. Oncol.19(6), 1734–1742 (2001).
  • Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM. Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res.67(20), 9609–9612 (2007).
  • Bosch TM. Pharmacogenomics of drug-metabolizing enzymes and drug transporters in chemotherapy. Methods Mol. Biol.448, 63–76 (2008).
  • Chang A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer71(1), 3–10 (2011).
  • Haber DA, Gray NS, Baselga J. The evolving war on cancer. Cell145(1), 19–24 (2011).
  • Fojo T, Grady C. How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question. J. Natl Cancer Inst.101(15), 1044–1048 (2009).
  • Mcclellan M, Benner J, Schilsky R et al. An accelerated pathway for targeted cancer therapies. Nat. Rev. Drug Discov.10(2), 79–80 (2011).
  • Papadopoulos N, Kinzler KW, Vogelstein B. The role of companion diagnostics in the development and use of mutation-targeted cancer therapies. Nat. Biotechnol.24(8), 985–995 (2006).
  • Bernards R. It’s diagnostics, stupid. Cell141(1), 13–17 (2010).
  • Weinstein IB, Joe AK. Mechanisms of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat. Clin. Pract. Oncol.3(8), 448–457 (2006).
  • Mcdermott U, Sharma SV, Dowell L et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl Acad. Sci. USA104(50), 19936–19941 (2007).
  • Weinstein IB, Joe A. Oncogene addiction. Cancer Res.68(9), 3077–3080 (2008).
  • Luo J, Elledge SJ. Cancer: deconstructing oncogenesis. Nature453(7198), 995–996 (2008).
  • Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell136(5), 823–837 (2009).
  • Gerber DE, Minna JD. ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell18(6), 548–551 (2010).
  • Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med.353(2), 123–132 (2005).
  • Cataldo VD, Gibbons DL, Perez-Soler R, Quintas-Cardama A. Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N. Engl. J. Med.364(10), 947–955 (2011).
  • Sandler A, Herbst R. Combining targeted agents: blocking the epidermal growth factor and vascular endothelial growth factor pathways. Clin. Cancer Res.12(14 Pt 2), S4421–S4425 (2006).
  • Tanne JH. FDA cancels approval for bevacizumab in advanced breast cancer. BMJ343, d7684 (2011).
  • Zhou C, Wu YL, Chen G et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, Phase 3 study. Lancet Oncol.12(8), 735–742 (2011).
  • Mitsudomi T, Morita S, Yatabe Y et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised Phase 3 trial. Lancet Oncol.11(2), 121–128 (2010).
  • Mitsudomi T. Erlotinib, gefitinib, or chemotherapy for EGFR mutation-positive lung cancer? Lancet Oncol.12(8), 710–711 (2011).
  • Lievre A, Bachet JB, Le Corre D et al.KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res.66(8), 3992–3995 (2006).
  • Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res.67(6), 2643–2648 (2007).
  • Amado RG, Wolf M, Peeters M et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol.26(10), 1626–1634 (2008).
  • Pao W, Wang TY, Riely GJ et al.KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med.2(1), e17 (2005).
  • Marks JL, Broderick S, Zhou Q et al. Prognostic and therapeutic implications of EGFR and KRAS mutations in resected lung adenocarcinoma. J. Thorac. Oncol.3(2), 111–116 (2008).
  • Massarelli E, Varella-Garcia M, Tang X et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin. Cancer Res.13(10), 2890–2896 (2007).
  • Linardou H, Dahabreh IJ, Kanaloupiti D et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol.9(10), 962–972 (2008).
  • Brugger W, Triller N, Blasinska-Morawiec M et al. Prospective molecular marker analyses of EGFR and KRAS from a randomized, placebo-controlled study of erlotinib maintenance therapy in advanced non-small-cell lung cancer. J. Clin. Oncol.29(31), 4113–4120 (2011).
  • O’byrne KJ, Gatzemeier U, Bondarenko I et al. Molecular biomarkers in non-small-cell lung cancer: a retrospective analysis of data from the Phase 3 FLEX study. Lancet Oncol.12(8), 795–805 (2011).
  • Douillard JY, Shepherd FA, Hirsh V et al. Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized Phase 3 INTEREST trial. J. Clin. Oncol.28(5), 744–752 (2010).
  • Kwak EL, Bang YJ, Camidge DR et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med.363(18), 1693–1703 (2010).
  • Camidge DR, Hirsch FR, Varella-Garcia M, Franklin WA. Finding ALK-positive lung cancer: what are we really looking for? J. Thorac. Oncol.6(3), 411–413 (2011).
  • Engelman JA, Janne PA. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res.14(10), 2895–2899 (2008).
  • Pao W, Miller VA, Politi KA et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med.2(3), e73 (2005).
  • Kobayashi S, Boggon TJ, Dayaram T et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.352(8), 786–792 (2005).
  • Engelman JA, Zejnullahu K, Mitsudomi T et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science316(5827), 1039–1043 (2007).
  • Bean J, Brennan C, Shih JY et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA104(52), 20932–20937 (2007).
  • Yano S, Wang W, Li Q et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res.68(22), 9479–9487 (2008).
  • Noro R, Gemma A, Miyanaga A et al.PTEN inactivation in lung cancer cells and the effect of its recovery on treatment with epidermal growth factor receptor tyrosine kinase inhibitors. Int. J. Oncol.31(5), 1157–1163 (2007).
  • Endoh H, Yatabe Y, Kosaka T, Kuwano H, Mitsudomi T. PTEN and PIK3CA expression is associated with prolonged survival after gefitinib treatment in EGFR-mutated lung cancer patients. J. Thorac. Oncol.1(7), 629–634 (2006).
  • Olaussen KA, Dunant A, Fouret P et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N. Engl. J. Med.355(10), 983–991 (2006).
  • Cobo M, Isla D, Massuti B et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a Phase 3 trial in non-small-cell lung cancer. J. Clin. Oncol.25(19), 2747–2754 (2007).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350(21), 2129–2139 (2004).
  • Paez JG, Janne PA, Lee JC et al.EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304(5676), 1497–1500 (2004).
  • Ding L, Getz G, Wheeler DA et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature455(7216), 1069–1075 (2008).
  • Sequist LV, Heist RS, Shaw AT et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann. Oncol.22(12), 2616–2624 (2011).
  • Weir BA, Woo MS, Getz G et al. Characterizing the cancer genome in lung adenocarcinoma. Nature450(7171), 893–898 (2007).
  • Kan Z, Jaiswal BS, Stinson J et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature466(7308), 869–873 (2010).
  • Downward J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer3(1), 11–22 (2003).
  • Riely GJ, Marks J, Pao W. KRAS mutations in non-small cell lung cancer. Proc. Am. Thorac. Soc.6(2), 201–205 (2009).
  • Nijman SM. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett.585(1), 1–6 (2011).
  • Kaelin WG Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer5(9), 689–698 (2005).
  • Lord CJ, Ashworth A. Biology-driven cancer drug development: back to the future. BMC Biol.8, 38 (2010).
  • Canaani D. Methodological approaches in application of synthetic lethality screening towards anticancer therapy. Br. J. Cancer100(8), 1213–1218 (2009).
  • Farmer H, Mccabe N, Lord CJ et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434(7035), 917–921 (2005).
  • Bryant HE, Schultz N, Thomas HD et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature434(7035), 913–917 (2005).
  • Fong PC, Boss DS, Yap TA et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med.361(2), 123–134 (2009).
  • Rios J, Puhalla S. PARP inhibitors in breast cancer: BRCA and beyond. Oncology (Williston Park)25(11), 1014–1025 (2011).
  • Engelman JA, Chen L, Tan X et al. Effective use of PI3K and MEK inhibitors to treat mutant KRAS G12D and PIK3CA H1047R murine lung cancers. Nat. Med.14(12), 1351–1356 (2008).
  • O’Reilly KE, Rojo F, She QB et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res.66(3), 1500–1508 (2006).
  • Wang X, Yue P, Kim YA, Fu H, Khuri FR, Sun SY. Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation. Cancer Res.68(18), 7409–7418 (2008).
  • Sellers WR. A blueprint for advancing genetics-based cancer therapy. Cell147(1), 26–31 (2011).
  • Brough R, Frankum JR, Costa-Cabral S, Lord CJ, Ashworth A. Searching for synthetic lethality in cancer. Curr. Opin. Genet. Dev.21(1), 34–41 (2011).
  • Mizuarai S, Kotani H. Synthetic lethal interactions for the development of cancer therapeutics: biological and methodological advancements. Hum. Genet.128(6), 567–575 (2010).
  • Westbrook TF, Stegmeier F, Elledge SJ. Dissecting cancer pathways and vulnerabilities with RNAi. Cold Spring Harb. Symp. Quant. Biol.70, 435–444 (2005).
  • Muellner MK, Uras IZ, Gapp BV et al. A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat. Chem. Biol.7(11), 787–793 (2011).
  • Ilic N, Utermark T, Widlund HR, Roberts TM. PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc. Natl Acad. Sci. USA108(37), E699–E708 (2011).
  • Liu P, Cheng H, Santiago S et al. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nat. Med.17(9), 1116–1120 (2011).
  • Lundberg AS, Randell SH, Stewart SA et al. Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene21(29), 4577–4586 (2002).
  • Soda M, Choi YL, Enomoto M et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature448(7153), 561–566 (2007).
  • Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat. Biotechnol.28(10), 1069–1078 (2010).
  • Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat. Genet.38(8), 896–903 (2006).
  • Costanzo M, Baryshnikova A, Bellay J et al. The genetic landscape of a cell. Science327(5964), 425–431 (2010).
  • Thatcher N, Chang A, Parikh P et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa survival evaluation in lung cancer). Lancet366(9496), 1527–1537 (2005).
  • Liu G, Gurubhagavatula S, Zhou W et al. Epidermal growth factor receptor polymorphisms and clinical outcomes in non-small-cell lung cancer patients treated with gefitinib. Pharmacogenomics J.8(2), 129–138 (2008).
  • Amador ML, Oppenheimer D, Perea S et al. An epidermal growth factor receptor intron 1 polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res.64(24), 9139–9143 (2004).
  • Rudin CM, Liu W, Desai A et al. Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J. Clin. Oncol.26(7), 1119–1127 (2008).
  • Li J, Cusatis G, Brahmer J et al. Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol. Ther.6(3), 432–438 (2007).
  • Hamilton M, Wolf JL, Rusk J et al. Effects of smoking on the pharmacokinetics of erlotinib. Clin. Cancer Res.12(7 Pt 1), 2166–2171 (2006).
  • Eramo A, Lotti F, Sette G et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ.15(3), 504–514 (2008).
  • Carette JE, Guimaraes CP, Varadarajan M et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science326(5957), 1231–1235 (2009).
  • Carette JE, Guimaraes CP, Wuethrich I et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol.29(6), 542–546 (2011).
  • Derose YS, Wang G, Lin YC et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med.17(11), 1514–1520 (2011).
  • Puyol M, Martin A, Dubus P et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell18(1), 63–73 (2010).
  • Meylan E, Dooley AL, Feldser DM et al. Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma. Nature462(7269), 104–107 (2009).
  • Basseres DS, Ebbs A, Levantini E, Baldwin AS. Requirement of the NF-κB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res.70(9), 3537–3546 (2010).
  • Engelman JA, Zejnullahu K, Gale CM et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res.67(24), 11924–11932 (2007).
  • Shimamura T, Lowell AM, Engelman JA, Shapiro GI. Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res.65(14), 6401–6408 (2005).
  • Paul I, Savage KI, Blayney JK et al. PARP inhibition induces BAX/BAK-independent synthetic lethality of BRCA1-deficient non-small cell lung cancer. J. Pathol.224(4), 564–574 (2011).
  • Schoeberl B, Faber AC, Li D et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res.70(6), 2485–2494 (2010).
  • De Raedt T, Walton Z, Yecies JL et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell20(3), 400–413 (2011).
  • Park KS, Martelotto LG, Peifer M et al. A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat. Med.17(11), 1504–1508 (2011).
  • Huang S, Ren X, Wang L, Zhang L, Wu X. Lung-cancer chemoprevention by induction of synthetic lethality in mutant KRAS premalignant cells in vitro and in vivo. Cancer Prev. Res. (Phila.)4(5), 666–673 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.