343
Views
18
CrossRef citations to date
0
Altmetric
Theme: Genetic & Genomics Applications - Review

Detection of copy number alterations in acute myeloid leukemia and myelodysplastic syndromes

&
Pages 253-264 | Published online: 09 Jan 2014

References

  • Haase D, Germing U, Schanz J et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood110(13), 4385–4395 (2007).
  • Vardiman JW, Thiele J, Arber DA et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood114(5), 937–951 (2009).
  • Greenberg P, Cox C, LeBeau MM et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood89(6), 2079–2088 (1997).
  • Malcovati L, Germing U, Kuendgen A et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J. Clin. Oncol.25(23), 3503–3510 (2007).
  • Dohner H, Estey EH, Amadori S et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European Leukemia Net. Blood115(3), 453–474 (2010).
  • Mardis ER, Ding L, Dooling DJ et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med.361(11), 1058–1066 (2009).
  • Ley TJ, Ding L, Walter MJ et al.DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med.363(25), 2424–2433 (2010).
  • O’Keefe CL, Tiu R, Gondek LP et al. High-resolution genomic arrays facilitate detection of novel cryptic chromosomal lesions in myelodysplastic syndromes. Exp. Hematol.35(2), 240–251 (2007).
  • Paulsson K, Heidenblad M, Strombeck B et al. High-resolution genome-wide array-based comparative genome hybridization reveals cryptic chromosome changes in AML and MDS cases with trisomy 8 as the sole cytogenetic aberration. Leukemia20(5), 840–846 (2006).
  • Thiel A, Beier M, Ingenhag D et al. Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance. Leukemia25(3), 387–399 (2011).
  • Starczynowski DT, Vercauteren S, Telenius A et al. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood112(8), 3412–3424 (2008).
  • Graubert TA, Payton MA, Shao J et al. Integrated genomic analysis implicates haploinsufficiency of multiple chromosome 5q31.2 genes in de novo myelodysplastic syndromes pathogenesis. PLoS One4(2), e4583 (2009).
  • Suela J, Alvarez S, Cigudosa JC. DNA profiling by arrayCGH in acute myeloid leukemia and myelodysplastic syndromes. Cytogenet Genome Res.118(2–4), 304–309 (2007).
  • Heinrichs S, Look AT. Identification of structural aberrations in cancer by SNP array analysis. Genome Biol.8(7), 219 (2007).
  • Heinrichs S, Li C, Look AT. SNP array analysis in hematologic malignancies: avoiding false discoveries. Blood115(21), 4157–4161 (2010).
  • O’Keefe C, McDevitt MA, Maciejewski JP. Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies. Blood115(14), 2731–2739 (2010).
  • Delhommeau F, Jeziorowska D, Marzac C, Casadevall N. Molecular aspects of myeloproliferative neoplasms. Int. J. Hematol.91(2), 165–173 (2010).
  • Tiu RV, Visconte V, Traina F, Schwandt A, Maciejewski JP. Updates in cytogenetics and molecular markers in MDS. Curr. Hematol. Malig. Rep.6(2), 126–135 (2011).
  • Mullighan CG, Goorha S, Radtke I et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature446(7137), 758–764 (2007).
  • Mullighan CG, Miller CB, Radtke I et al.BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature453(7191), 110–114 (2008).
  • Mullighan CG, Phillips LA, Su X et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science322(5906), 1377–1380 (2008).
  • Heinrichs S, Kulkarni RV, Bueso-Ramos CE et al. Accurate detection of uniparental disomy and microdeletions by SNP array analysis in myelodysplastic syndromes with normal cytogenetics. Leukemia23(9), 1605–1613 (2009).
  • Gondek LP, Haddad AS, O’Keefe CL et al. Detection of cryptic chromosomal lesions including acquired segmental uniparental disomy in advanced and low-risk myelodysplastic syndromes. Exp. Hematol.35(11), 1728–1738 (2007).
  • Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood111(3), 1534–1542 (2008).
  • Mohamedali A, Gaken J, Twine NA et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood110(9), 3365–3373 (2007).
  • Radtke I, Mullighan CG, Ishii M et al. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proc. Natl Acad. Sci. USA106(31), 12944–12949 (2009).
  • Tiu RV, Gondek LP, O’Keefe CL et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood117(17), 4552–4560 (2011).
  • Tyybakinoja A, Elonen E, Piippo K, Porkka K, Knuutila S. Oligonucleotide array-CGH reveals cryptic gene copy number alterations in karyotypically normal acute myeloid leukemia. Leukemia21(3), 571–574 (2007).
  • Suela J, Alvarez S, Cifuentes F et al. DNA profiling analysis of 100 consecutive de novo acute myeloid leukemia cases reveals patterns of genomic instability that affect all cytogenetic risk groups. Leukemia21(6), 1224–1231 (2007).
  • Barresi V, Romano A, Musso N et al. Broad copy neutral-loss of heterozygosity regions and rare recurring copy number abnormalities in normal karyotype-acute myeloid leukemia genomes. Genes Chromosomes Cancer49(11), 1014–1023 (2010).
  • Gupta M, Raghavan M, Gale RE et al. Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia. Genes Chromosomes Cancer47(9), 729–739 (2008).
  • Tiu RV, Gondek LP, O’Keefe CL et al. New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. J. Clin. Oncol.27(31), 5219–5226 (2009).
  • Walter MJ, Payton JE, Ries RE et al. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc. Natl Acad. Sci. USA106(31), 12950–12955 (2009).
  • Walter MJ, Shen D, Ding L et al. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med.366(12), 1090–1098 (2012).
  • Solomon DA, Kim T, Diaz-Martinez LA et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science333(6045), 1039–1043 (2011).
  • Bullinger L, Kronke J, Schon C et al. Identification of acquired copy number alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-resolution single-nucleotide polymorphism analysis. Leukemia24(2), 438–449 (2010).
  • Parkin B, Erba H, Ouillette P et al. Acquired genomic copy number aberrations and survival in adult acute myelogenous leukemia. Blood116(23), 4958–4967 (2010).
  • Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia17(3), 637–641 (2003).
  • Delhommeau F, Dupont S, Della Valle V et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med.360(22), 2289–2301 (2009).
  • Langemeijer SM, Kuiper RP, Berends M et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat. Genet.41(7), 838–842 (2009).
  • Mohamedali AM, Smith AE, Gaken J et al. Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome. J. Clin. Oncol.27(24), 4002–4006 (2009).
  • Jankowska AM, Szpurka H, Tiu RV et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood113(25), 6403–6410 (2009).
  • Sanada M, Suzuki T, Shih LY et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature460(7257), 904–908 (2009).
  • Dunbar AJ, Gondek LP, O’Keefe CL et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res.68(24), 10349–10357 (2008).
  • Makishima H, Cazzolli H, Szpurka H et al. Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J. Clin. Oncol.27(36), 6109–6116 (2009).
  • Nikoloski G, Langemeijer SM, Kuiper RP et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet.42(8), 665–667 (2010).
  • Ernst T, Chase AJ, Score J et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet.42(8), 722–726 (2010).
  • Makishima H, Jankowska AM, Tiu RV et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia24(10), 1799–1804 (2010).
  • Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J. Clin. Oncol.19(5), 1405–1413 (2001).
  • Bowen D, Groves MJ, Burnett AK et al.TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia23(1), 203–206 (2009).
  • Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T. Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia22(8), 1539–1541 (2008).
  • Jasek M, Gondek LP, Bejanyan N et al.TP53 mutations in myeloid malignancies are either homozygous or hemizygous due to copy number-neutral loss of heterozygosity or deletion of 17p. Leukemia24(1), 216–219 (2010).
  • Gelsi-Boyer V, Trouplin V, Adelaide J et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br. J. Haematol.145(6), 788–800 (2009).
  • Boultwood J, Perry J, Pellagatti A et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia24(5), 1062–1065 (2010).
  • Ley TJ, Mardis ER, Ding L et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature456(7218), 66–72 (2008).
  • Graubert TA, Shen D, Ding L et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nature Genetics44(1), 53–57 (2011).
  • Yoshida K, Sanada M, Shiraishi Y et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature478(7367), 64–69 (2011).
  • Ding L, Ley TJ, Larson DE et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature481(7382), 506–510 (2012).
  • Link DC, Schuettpelz LG, Shen D et al. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA305(15), 1568–1576 (2011).
  • Welch JS, Westervelt P, Ding L et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA305(15), 1577–1584 (2011).
  • Campbell PJ, Yachida S, Mudie LJ et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature467(7319), 1109–1113 (2010).
  • Maher CA, Kumar-Sinha C, Cao X et al. Transcriptome sequencing to detect gene fusions in cancer. Nature458(7234), 97–101 (2009).
  • Stephens PJ, Greenman CD, Fu B et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell144(1), 27–40 (2011).
  • Roychowdhury S, Iyer MK, Robinson DR et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med.3(111), 111ra121 (2011).
  • Ebert BL, Pretz J, Bosco J et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature451(7176), 335–339 (2008).
  • Yang X, Boehm JS, Salehi-Ashtiani K et al. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods8(8), 659–661 (2011).
  • Hahn CK, Berchuck JE, Ross KN et al. Proteomic and genetic approaches identify Syk as an AML target. Cancer Cell16(4), 281–294 (2009).
  • Graubert T, Walter MJ. Genetics of myelodysplastic syndromes: new insights. Hematol. Am. Soc. Hematol. Educ. Program2011, 543–549 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.