156
Views
13
CrossRef citations to date
0
Altmetric
Theme: Genetic & Genomics Applications - Review

Epigenetic and genetic alterations-based molecular classification of head and neck cancer

, &
Pages 279-290 | Published online: 09 Jan 2014

References

  • Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J. Clin.55(2), 74–108 (2005).
  • Hinerman RW, Mendenhall WM, Morris CG, Amdur RJ, Werning JW, Villaret DB. Postoperative irradiation for squamous cell carcinoma of the oral cavity: 35-year experience. Head Neck26(11), 984–994 (2004).
  • Stewart BW, Kleihues P. World Cancer Report: Head and Neck Cancer. IARC Press, Lyon, France, 232–236 (2003).
  • Le QT, Giaccia AJ. Therapeutic exploitation of the physiological and molecular genetic alterations in head and neck cancer. Clin. Cancer Res.9(12), 4287–4295 (2003).
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell144(5), 646–674 (2011).
  • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat. Med.10(8), 789–799 (2004).
  • Mandrekar SJ, Sargent DJ. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J. Clin. Oncol.27(24), 4027–4034 (2009).
  • Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat. Med.17(3), 330–339 (2011).
  • Esteller M, Fraga MF, Paz MF et al. Cancer epigenetics and methylation. Science297(5588), 1807–1808 (2002).
  • Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301(5895), 89–92 (1983).
  • Bird AP. DNA methylation – how important in gene control? Nature307(5951), 503–504 (1984).
  • Esteller M. Epigenetics in cancer. N. Engl. J. Med.358(11), 1148–1159 (2008).
  • Jones PA, Laird PW. Cancer epigenetics comes of age. Nat. Genet.21(2), 163–167 (1999).
  • Das PM, Singal R. DNA methylation and cancer. J. Clin. Oncol.22(22), 4632–4642 (2004).
  • Smith IM, Glazer CA, Mithani SK et al. Coordinated activation of candidate proto-oncogenes and cancer testes antigens via promoter demethylation in head and neck cancer and lung cancer. PLoS One4(3), e4961 (2009).
  • Doi A, Park IH, Wen B et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet.41(12), 1350–1353 (2009).
  • Meissner A, Mikkelsen TS, Gu H et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature454(7205), 766–770 (2008).
  • Lister R, Pelizzola M, Dowen RH et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature462(7271), 315–322 (2009).
  • Feinberg AP. Cancer epigenetics is no mickey mouse. Cancer Cell8(4), 267–268 (2005).
  • Kouzarides T. Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Allis CD, Berger SL, Cote J et al. New nomenclature for chromatin-modifying enzymes. Cell131(4), 633–636 (2007).
  • Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell128(4), 707–719 (2007).
  • Seligson DB, Horvath S, McBrian MA et al. Global levels of histone modifications predict prognosis in different cancers. Am. J. Pathol.174(5), 1619–1628 (2009).
  • Manuyakorn A, Paulus R, Farrell J et al. Cellular histone modification patterns predict prognosis and treatment response in resectable pancreatic adenocarcinoma: results from RTOG 9704. J. Clin. Oncol.28(8), 1358–1365 (2010).
  • Elsheikh SE, Green AR, Rakha EA et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res.69(9), 3802–3809 (2009).
  • Kantarjian H, Issa JP, Rosenfeld CS et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a Phase 3 randomized study. Cancer106(8), 1794–1803 (2006).
  • Silverman LR, Demakos EP, Peterson BL et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol.20(10), 2429–2440 (2002).
  • Whittaker SJ, Demierre MF, Kim EJ et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol.28(29), 4485–4491 (2010).
  • Olsen EA, Kim YH, Kuzel TM et al. Phase 2b multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol.25(21), 3109–3115 (2007).
  • Tsai HC, Baylin SB. Cancer epigenetics: linking basic biology to clinical medicine. Cell Res.21(3), 502–517 (2011).
  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA93(18), 9821–9826 (1996).
  • Frommer M, McDonald LE, Millar DS et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA89(5), 1827–1831 (1992).
  • Bibikova M, Lin Z, Zhou L et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res.16(3), 383–393 (2006).
  • Ai L, Vo QN, Zuo C et al. Ataxia-telangiectasia-mutated (ATM) gene in head and neck squamous cell carcinoma: promoter hypermethylation with clinical correlation in 100 cases. Cancer Epidemiol. Biomarkers Prev.13(1), 150–156 (2004).
  • El-Naggar AK, Lai S, Clayman G et al. Methylation, a major mechanism of p16/CDKN2 gene inactivation in head and neck squamous carcinoma. Am. J. Pathol.151(6), 1767–1774 (1997).
  • Ha PK, Califano JA. Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol.7(1), 77–82 (2006).
  • Bennett KL, Romigh T, Arab K et al. Activator protein 2alpha (AP2alpha) suppresses 42 kDa C/CAAT enhancer binding protein a (p42(C/EBPalpha)) in head and neck squamous cell carcinoma. Int. J. Cancer124(6), 1285–1292 (2009).
  • Kunimoto Y, Nakano S, Kataoka H, Shimada Y, Oshimura M, Kitano H. Deleted in esophageal cancer 1(DEC1) is down-regulated and contributes to migration in head and neck squamous cell carcinoma cell lines. ORL J. Otorhinolaryngol. Relat. Spec.73(1), 17–23 (2011).
  • Fraga MF, Ballestar E, Villar-Garea A et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet.37(4), 391–400 (2005).
  • Rosas SL, Koch W, da Costa Carvalho MG et al. Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res.61(3), 939–942 (2001).
  • Sanchez-Cespedes M, Esteller M, Wu L et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res.60(4), 892–895 (2000).
  • Chang HW, Chan A, Kwong DL, Wei WI, Sham JS, Yuen AP. Evaluation of hypermethylated tumor suppressor genes as tumor markers in mouth and throat rinsing fluid, nasopharyngeal swab and peripheral blood of nasopharygeal carcinoma patient. Int. J. Cancer105(6), 851–855 (2003).
  • Hamana K, Uzawa K, Ogawara K et al. Monitoring of circulating tumour-associated DNA as a prognostic tool for oral squamous cell carcinoma. Br. J. Cancer92(12), 2181–2184 (2005).
  • Ha PK, Chang SS, Glazer CA, Califano JA, Sidransky D. Molecular techniques and genetic alterations in head and neck cancer. Oral Oncol.45(4–5), 335–339 (2009).
  • Jin C, Jin Y, Wennerberg J, Annertz K, Enoksson J, Mertens F. Cytogenetic abnormalities in 106 oral squamous cell carcinomas. Cancer Genet. Cytogenet.164(1), 44–53 (2006).
  • Patmore HS, Ashman JN, Stafford ND et al. Genetic analysis of head and neck squamous cell carcinoma using comparative genomic hybridisation identifies specific aberrations associated with laryngeal origin. Cancer Lett.258(1), 55–62 (2007).
  • Singh B, Gogineni S, Goberdhan A et al. Spectral karyotyping analysis of head and neck squamous cell carcinoma. Laryngoscope111(9), 1545–1550 (2001).
  • An J, Liu Z, Hu Z et al. Potentially functional single nucleotide polymorphisms in the core nucleotide excision repair genes and risk of squamous cell carcinoma of the head and neck. Cancer Epidemiol. Biomarkers Prev.16(8), 1633–1638 (2007).
  • Kuroda Y, Nakao H, Ikemura K, Katoh T. Association between the TP53 codon72 polymorphism and oral cancer risk and prognosis. Oral Oncol.43(10), 1043–1048 (2007).
  • De Schutter H, Spaepen M, McBride WH, Nuyts S. The clinical relevance of microsatellite alterations in head and neck squamous cell carcinoma: a critical review. Eur. J. Hum. Genet.15(7), 734–741 (2007).
  • Ogawara K, Miyakawa A, Shiba M et al. Allelic loss of chromosome 13q14.3 in human oral cancer: correlation with lymph node metastasis. Int. J. Cancer79(4), 312–317 (1998).
  • Bockmuhl U, Schwendel A, Dietel M, Petersen I. Distinct patterns of chromosomal alterations in high- and low-grade head and neck squamous cell carcinomas. Cancer Res.56(23), 5325–5329 (1996).
  • Choi HR, Roberts DB, Johnigan RH et al. Molecular and clinicopathologic comparisons of head and neck squamous carcinoma variants: common and distinctive features of biological significance. Am. J. Surg. Pathol.28(10), 1299–1310 (2004).
  • Coon SW, Savera AT, Zarbo RJ et al. Prognostic implications of loss of heterozygosity at 8p21 and 9p21 in head and neck squamous cell carcinoma. Int. J. Cancer111(2), 206–212 (2004).
  • Scholnick SB, Haughey BH, Sunwoo JB et al. Chromosome 8 allelic loss and the outcome of patients with squamous cell carcinoma of the supraglottic larynx. J. Natl Cancer Inst.88(22), 1676–1682 (1996).
  • Guerin LA, Hoffman HT, Zimmerman MB, Robinson RA. Decreased fragile histidine triad gene protein expression is associated with worse prognosis in oral squamous carcinoma. Arch. Pathol. Lab. Med.130(2), 158–164 (2006).
  • Thomas GR, Nadiminti H, Regalado J. Molecular predictors of clinical outcome in patients with head and neck squamous cell carcinoma. Int. J. Exp. Pathol.86(6), 347–363 (2005).
  • Soni S, Kaur J, Kumar A et al. Alterations of rb pathway components are frequent events in patients with oral epithelial dysplasia and predict clinical outcome in patients with squamous cell carcinoma. Oncology68(4–6), 314–325 (2005).
  • Blons H, Cabelguenne A, Carnot F et al. Microsatellite analysis and response to chemotherapy in head-and-neck squamous-cell carcinoma. Int. J. Cancer84(4), 410–415 (1999).
  • van ’t Veer LJ, Bernards R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature452(7187), 564–570 (2008).
  • Kuriakose MA, Chen WT, He ZM et al. Selection and validation of differentially expressed genes in head and neck cancer. Cell. Mol. Life Sci.61(11), 1372–1383 (2004).
  • Chung CH, Parker JS, Karaca G et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell5(5), 489–500 (2004).
  • Belbin TJ, Singh B, Barber I et al. Molecular classification of head and neck squamous cell carcinoma using cDNA microarrays. Cancer Res.62(4), 1184–1190 (2002).
  • Liu CJ, Liu TY, Kuo LT et al. Differential gene expression signature between primary and metastatic head and neck squamous cell carcinoma. J. Pathol.214, 489–497 (2008).
  • Yan M, Xu Q, Zhang P, Zhou XJ, Zhang ZY, Chen WT. Correlation of NF-κB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. BMC Cancer10, 437 (2010).
  • Roepman P, Wessels LF, Kettelarij N et al. An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat. Genet.37(2), 182–186 (2005).
  • Neve RM, Chin K, Fridlyand J et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell10(6), 515–527 (2006).
  • Kawaguchi H, El-Naggar AK, Papadimitrakopoulou V et al. Podoplanin: a novel marker for oral cancer risk in patients with oral premalignancy. J. Clin. Oncol.26(3), 354–360 (2008).
  • Liu W, Feng JQ, Shen XM, Wang HY, Liu Y, Zhou ZT. Two stem cell markers, ATP-binding cassette, G2 subfamily (ABCG2) and BMI-1, predict the transformation of oral leukoplakia to cancer: a long-term follow-up study. Cancer118(6), 1693–1700 (2011).
  • Cao W, Younis RH, Li J et al. EZH2 promotes malignant phenotypes and is a predictor of oral cancer development in patients with oral leukoplakia. Cancer Prev. Res. (Phila.)4(11), 1816–1824 (2011).
  • Saintigny P, Zhang L, Fan YH et al. Gene expression profiling predicts the development of oral cancer. Cancer Prev. Res. (Phila.)4(2), 218–229 (2011).
  • Si P, Bakker E. Thin layer electrochemical extraction of non-redoxactive cations with an anion-exchanging conducting polymer overlaid with a selective membrane. Chem. Commun. (Camb.) (35), 5260–5262 (2009).
  • D’Souza G, Kreimer AR, Viscidi R et al. Case-control study of human papillomavirus and oropharyngeal cancer. N. Engl. J. Med.356(19), 1944–1956 (2007).
  • Lopes V, Murray P, Williams H, Woodman C, Watkinson J, Robinson M. Squamous cell carcinoma of the oral cavity rarely harbours oncogenic human papillomavirus. Oral Oncol.47(8), 698–701 (2011).
  • Paz IB, Cook N, Odom-Maryon T, Xie Y, Wilczynski SP. Human papillomavirus (HPV) in head and neck cancer. An association of HPV 16 with squamous cell carcinoma of Waldeyer’s tonsillar ring. Cancer79(3), 595–604 (1997).
  • Fakhry C, Gillison ML. Clinical implications of human papillomavirus in head and neck cancers. J. Clin. Oncol.24(17), 2606–2611 (2006).
  • Lindel K, Beer KT, Laissue J, Greiner RH, Aebersold DM. Human papillomavirus positive squamous cell carcinoma of the oropharynx: a radiosensitive subgroup of head and neck carcinoma. Cancer92(4), 805–813 (2001).
  • Fakhry C, Westra WH, Li S et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J. Natl Cancer Inst.100(4), 261–269 (2008).
  • Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science248(4951), 76–79 (1990).
  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell63(6), 1129–1136 (1990).
  • Hafkamp HC, Speel EJ, Haesevoets A et al. A subset of head and neck squamous cell carcinomas exhibits integration of HPV 16/18 DNA and overexpression of p16INK4A and p53 in the absence of mutations in P53 exons 5–8. Int. J. Cancer107(3), 394–400 (2003).
  • Begum S, Gillison ML, Ansari-Lari MA, Shah K, Westra WH. Detection of human papillomavirus in cervical lymph nodes: a highly effective strategy for localizing site of tumor origin. Clin. Cancer Res.9(17), 6469–6475 (2003).
  • Wang Z, Sturgis EM, Zhang Y et al. Combined p53-related genetic variants together with HPV infection increase oral cancer risk. Int. J. Cancer doi:10.1002/ijc.27335 (2011) (Epub ahead of print).
  • Gillison ML. Human papillomavirus and prognosis of oropharyngeal squamous cell carcinoma: implications for clinical research in head and neck cancers. J. Clin. Oncol.24(36), 5623–5625 (2006).
  • Braakhuis BJ, Brakenhoff RH, Meijer CJ, Snijders PJ, Leemans CR. Human papilloma virus in head and neck cancer: the need for a standardised assay to assess the full clinical importance. Eur. J. Cancer45(17), 2935–2939 (2009).
  • Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J. Clin. Oncol.24(17), 2666–2672 (2006).
  • Psyrri A, Yu Z, Weinberger PM et al. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin. Cancer Res.11(16), 5856–5862 (2005).
  • Ang KK, Berkey BA, Tu X et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res.62(24), 7350–7356 (2002).
  • Pai SI, Westra WH. Molecular pathology of head and neck cancer: implications for diagnosis, prognosis, and treatment. Annu. Rev. Pathol.4, 49–70 (2009).
  • Sundvall M, Karrila A, Nordberg J, Grenman R, Elenius K. EGFR targeting drugs in the treatment of head and neck squamous cell carcinoma. Expert Opin. Emerg. Drugs15(2), 185–201 (2010).
  • Bonner JA, Harari PM, Giralt J et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med.354(6), 567–578 (2006).
  • Vermorken JB, Mesia R, Rivera F et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med.359(11), 1116–1127 (2008).
  • Petak I, Schwab R, Orfi L, Kopper L, Keri G. Integrating molecular diagnostics into anticancer drug discovery. Nat. Rev. Drug Discov.9(7), 523–535 (2010).
  • Callender T, El-Naggar AK, Lee MS, Frankenthaler R, Luna MA, Batsakis JG. PRAD-1 (CCND1)/cyclin D1 oncogene amplification in primary head and neck squamous cell carcinoma. Cancer74(1), 152–158 (1994).
  • Hunter T, Pines J. Cyclins and cancer. II: cyclin D and CDK inhibitors come of age. Cell79(4), 573–582 (1994).
  • Bellacosa A, Almadori G, Cavallo S et al.Cyclin D1 gene amplification in human laryngeal squamous cell carcinomas: prognostic significance and clinical implications. Clin. Cancer Res.2(1), 175–180 (1996).
  • Yu Z, Weinberger PM, Haffty BG et al. Cyclin D1 is a valuable prognostic marker in oropharyngeal squamous cell carcinoma. Clin. Cancer Res.11(3), 1160–1166 (2005).
  • Wang CY, Guttridge DC, Mayo MW, Baldwin AS. NF-κB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol. Cell. Biol.19(9), 5923–5929 (1999).
  • Rosenwald A, Wright G, Wiestner A et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell3(2), 185–197 (2003).
  • Zhang P, Zhang Z, Zhou X, Qiu W, Chen F, Chen W. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line. BMC Cancer6, 224 (2006).
  • Zhou X, Zhang Z, Yang X, Chen W, Zhang P. Inhibition of cyclin D1 expression by cyclin D1 shRNAs in human oral squamous cell carcinoma cells is associated with increased cisplatin chemosensitivity. Int. J. Cancer124(2), 483–489 (2009).
  • Feng Z, Guo W, Zhang C et al.CCND1 as a predictive biomarker of neoadjuvant chemotherapy in patients with locally advanced head and neck squamous cell carcinoma. PLoS One6(10), e26399 (2011).
  • Simon JA. Transcription. Sweet silencing. Science325(5936), 45–46 (2009).
  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev.16(22), 2893–2905 (2002).
  • Cao R, Wang L, Wang H et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298(5595), 1039–1043 (2002).
  • Kondo Y, Shen L, Cheng AS et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat. Genet.40(6), 741–750 (2008).
  • Vire E, Brenner C, Deplus R et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature439(7078), 871–874 (2006).
  • Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the Polycomb connection. Cell118(4), 409–418 (2004).
  • Varambally S, Dhanasekaran SM, Zhou M et al. The Polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419(6907), 624–629 (2002).
  • Kikuchi J, Kinoshita I, Shimizu Y et al. Distinctive expression of the Polycomb group proteins Bmi1 Polycomb ring finger oncogene and enhancer of zeste homolog 2 in nonsmall cell lung cancers and their clinical and clinicopathologic significance. Cancer116(12), 3015–3024 (2010).
  • Gong Y, Huo L, Liu P et al. Polycomb group protein EZH2 is frequently expressed in inflammatory breast cancer and is predictive of worse clinical outcome. Cancer117(24), 5476–5484 (2011).
  • He LR, Liu MZ, Li BK et al. High expression of EZH2 is associated with tumor aggressiveness and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. Int. J. Cancer127(1), 138–147 (2010).
  • Kidani K, Osaki M, Tamura T et al. High expression of EZH2 is associated with tumor proliferation and prognosis in human oral squamous cell carcinomas. Oral Oncol.45(1), 39–46 (2009).
  • Cao W, Feng Z, Cui Z et al. Up-regulation of enhancer of zeste homolog 2 is associated positively with cyclin D1 overexpression and poor clinical outcome in head and neck squamous cell carcinoma. Cancer doi:10.1002/cncr.26575 (2011) (Epub ahead of print).
  • Hall GL, Kademani D, Risk JM, Shaw RJ. Tissue banking in head and neck cancer. Oral Oncol.44(2), 109–115 (2008).
  • Spruessel A, Steimann G, Jung M et al. Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. Biotechniques36(6), 1030–1037 (2004).
  • Blackhall FH, Pintilie M, Wigle DA et al. Stability and heterogeneity of expression profiles in lung cancer specimens harvested following surgical resection. Neoplasia6(6), 761–767 (2004).
  • Ghazani AA, Arneson NC, Warren K, Done SJ. Limited tissue fixation times and whole genomic amplification do not impact array CGH profiles. J. Clin. Pathol.59(3), 311–315 (2006).
  • Specht K, Richter T, Muller U, Walch A, Werner M, Hofler H. Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue. Am. J. Pathol.158(2), 419–429 (2001).
  • Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat. Med.2(9), 1035–1037 (1996).
  • Righini CA, de Fraipont F, Timsit JF et al. Tumor-specific methylation in saliva: a promising biomarker for early detection of head and neck cancer recurrence. Clin. Cancer Res.13(4), 1179–1185 (2007).
  • Ruesga MT, Acha-Sagredo A, Rodriguez MJ et al.p16(INK4a) promoter hypermethylation in oral scrapings of oral squamous cell carcinoma risk patients. Cancer Lett.250(1), 140–145 (2007).
  • Bell WC, Sexton KC, Grizzle WE. Organizational issues in providing high-quality human tissues and clinical information for the support of biomedical research. Methods Mol. Biol.576, 1–30 (2010).
  • Hunt JL, Finkelstein SD. Microdissection techniques for molecular testing in surgical pathology. Arch. Pathol. Lab. Med.128(12), 1372–1378 (2004).
  • Holland NT, Smith MT, Eskenazi B, Bastaki M. Biological sample collection and processing for molecular epidemiological studies. Mutat. Res.543(3), 217–234 (2003).
  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat. Rev. Cancer6(11), 857–866 (2006).
  • Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer6(4), 259–269 (2006).
  • Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105(30), 10513–10518 (2008).
  • Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett.286(2), 217–222 (2009).
  • Zhang J, Sun Q, Zhang Z, Ge S, Han ZG, Chen WT. Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene doi:10.1038/onc.2012.28 (2012) (Epub ahead of print).
  • Stransky N, Egloff AM, Tward AD et al. The mutational landscape of head and neck squamous cell carcinoma. Science333(6046), 1157–1160 (2011).
  • Agrawal N, Frederick MJ, Pickering CR et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science333(6046), 1154–1157 (2011).
  • Mardis ER. A decade’s perspective on DNA sequencing technology. Nature470(7333), 198–203 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.