105
Views
23
CrossRef citations to date
0
Altmetric
Review

The future of molecular diagnostics for drug-resistant tuberculosis

&
Pages 395-405 | Published online: 09 Jan 2014

References

  • World Health Organization. The stop TB strategy. World Health Organization WHO/HTM/TB/2006.368 (2006).
  • Wells CG, Cegielski P, Nelson LJ et al. HIV infection and multidrug resistant tuberculosis: the perfect storm. J. Infect. Dis.196(Suppl. 1), S86–S107 (2007).
  • World Health Organization. Anti-tuberculosis drug resistance in the world.Fourth global report. World Health Organization WHO/HTM/TB/2008.394 (2008).
  • World Health Organization. Multidrug and extensively drug-resistant TB: 2010 global report on surveillance and response. World Health Organization WHO/HTM/TB/2010.3 (2010).
  • Gandhi NR, Nunn P, Dheda K et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet375(9728), 1830–1843 (2010).
  • Shah NS, Richardson J, Moodley P et al. Increasing drug resistance in extensively drug-resistant tuberculosis, South Africa. Emerg. Infect. Dis.17(3), 510–513 (2011).
  • Velayati AA, Masjedi MR, Farnia P et al. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug resistant tuberculosis or totally dru-resistant resistant strains in Iran. Chest.136(2), 420–425 (2009).
  • Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C. Totally drug-resistant tuberculosis in India. Clin. Infect. Dis.54(4), 579–581 (2012).
  • Dorman SE, Chaisson R. From magic bullets back to the Magic Mountain: the rise of extensively drug-resistant tuberculosis. Nat. Med.13(3), 295–298 (2007).
  • Dheda K, Shean K, Zumla A et al. Early treatment outcomes and HIV status of patients with extensively drug-resistant tuberculosis in South Africa: a retrospective cohort study. Lancet375(9728), 1798–1807 (2010).
  • Shenoi S, Heysell SK, Moll AP, Friedland G. Multi-drug resistant and extensively drug-resistant tuberculosis: consequences for the global HIV community. Curr. Opin. Infect. Dis.22(1), 11–17 (2009).
  • Resch SC, Salomon JA, Murray M, Weinstein MC. Cost-effectiveness of treating multidrug-resistant tuberculosis. PLoS Med.3(7), E241 (2006).
  • Kim SJ, Espinal MA, Abe C et al. Is second-line anti-tuberculosis drug susceptibility testing reliable? Int. J. Tuberc. Lung Dis.8(9), 1157–1158 (2004).
  • Drobniewski F, Rusch-Gerdes S, Hoffner S. Antimicrobial susceptibility testing of Mycobacterium tuberculosis (EUCAST document E.DEF 8.1). Clin. Microbiol. Infect.13(12), 1144–1156 (2007).
  • Kim SJ. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur. Respir. J.25(3), 564–569 (2005).
  • Heysell SK, Houpt ER. Optimizing second-line therapy for drug-resistant tuberculosis: the additive value of sequencing for multiple resistance loci. Antimicrob. Agents Chemother.55(8), 3968–3969 (2011).
  • World Health Organization. Guidelines for drug susceptibility testing of second line drugs for Mycobacterium tuberculosis. WHO, Geneva, Switzerland (2001).
  • Woods GL, Warren NG, Inderlied CB. Susceptibility testing methods: mycobacteria, Nocardia, and other actinomycetes. In: Manual of Clinical Microbiology. Murray PR et al (Ed.). ASM Press, Washington DC, 1223–1247 (2007).
  • Heifets LB, Cangelosi GA. Drug susceptibility testing of Mycobacterium: a neglected problem at the turn of the century. Int. J. Tuberc. Lung Dis.3(7), 564–581 (1999).
  • Grandjean L, Moore DAJ. Tuberculosis in the developing world: recent advances in diagnosis with special consideration of extensively drug-resistant tuberculosis. Curr. Opin. Infect. Dis.21(5), 454–461 (2008).
  • Pfyffer GE, Bonato DA, Ebrahimzadeh A et al. Multicenter laboratory validation of susceptibility testing of Mycobacterium tuberculosis against classical second-line and newer antimicrobial drugs by using the radiometric BACTEC 460 technique and the proportion method with solid media. J. Clin. Microbiol.37(10), 3179–3186 (1999).
  • Kontos F, Maniati M, Costopoulos C et al. Evaluation of the fully automated Bactec MGIT 960 system for the susceptibility testing of Mycobacterium tuberculosis to first-line drugs: a multicenter study. J. Microbiol. Methods56(2), 291–294 (2004).
  • Garrigo M, Aragon LM, Alcaide F et al. Multicenter laboratory evaluation of the MB/BacT Mycobacterium detection system and the BACTEC MGIT 960 system in comparison with the BACTEC 460TB system for susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol.45(6), 1766–1770 (2007).
  • Rüsch-Gerdes S, Pfyffer GE, Casal M, Chadwick M, Siddiqi S. Multicenter laboratory validation of the BACTEC MGIT 960 technique for testing susceptibilities of Mycobacterium tuberculosis to classical second-line drugs and newer antimicrobials. J. Clin. Microbiol.44(3), 688–692 (2006).
  • Kruuner A, Yates MD, Drobniewski FA. Evaluation of MGIT 960-based antimicrobial testing and determination of critical concentrations of first and second-line antimicrobial drugs with drug-resistant clinical strains of Mycobacterium tuberculosis. J. Clin. Microbiol.44(3), 811–818 (2006).
  • Muyoyeta M, Schaap JA, De Haas P et al. Comparison of four culture systems for Mycobacterium tuberculosis in the Zambian national reference laboratory. Int. J. Tuberc. Lung Dis.13(4), 460–465 (2009).
  • Rohner P, Ninet B, Metral C et al. Evaluation of the MB/BacT system and comparison to the BACTEC 460 system and solid media for isolation of mycobacteria from clinical specimens. J. Clin. Microbiol.35(12), 3127–3131 (1997).
  • Woods GL, Fish G, Plaunt M et al. Clinical evaluation of difco ESP culture system II for growth and detection of mycobacteria. J. Clin. Microbiol.35(1), 121–124 (1997).
  • Watterson SA, Wilson SM, Yates MD, Drobniewski FA. Comparison of three molecular assays for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. J. Clin. Microbiol.36(7), 1969–1973 (1998).
  • Drobniewski FA, Watterson SA, Wilson SM, Harris GS. A clinical, microbiological and economic analysis of a national UK service for the rapid molecular diagnosis of tuberculosis and rifampicin resistance in Mycobacterium tuberculosis. J. Med. Microbiol.49(3), 271–278 (2000).
  • Nikolayevsky V, Brown T, Balabanova Y et al. Detection of mutations associated with isoniazid and rifampin resistance in Mycobacterium tuberculosis isolates from Samara region, Russian Federation. J. Clin. Microbiol.42(10), 4498–4502 (2004).
  • Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber. Lung Dis.79(1), 3–29 (1998).
  • Telenti A. Genetics of drug resistant tuberculosis. Thorax53(9), 793–797 (1998).
  • Parsons LM, Salfinger M, Clobridge A et al. Phenotypic and molecular characterization of Mycobacterium tuberculosis isolates resistant to both isoniazid and ethambutol. Antimicrob. Agents Chemother.49(6), 2218–2225 (2005).
  • Caminero JA, Sotgiu G, Zumla A, Migliori GB. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect. Dis.10(9), 621–629 (2010).
  • Katiyar SK, Bihari S, Prakash S, Mamtani M, Kulkarni H. A randomized controlled trial of high-dose isoniazid adjuvant therapy for multidrug-resistant tuberculosis. Int. J. Tuberc. Lung Dis.12(2), 129–145 (2008).
  • Madison B, Robinson-Dunn B, George I et al. Multicenter evaluation of ethambutol susceptibility testing of Mycobacterium tuberculosis by agar proportion and radiometric methods. J. Clin. Microbiol.40(11), 3976–3979 (2002).
  • Telenti A, Phillipp WJ, Srivatsan S et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat. Med.3(5), 567–570 (1997).
  • Starks AM, Gumusboga A, Plikaytis BB, Shinnick TM, Posey JE. Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.53(3), 1061–1066 (2009).
  • Morlock GP, Crawford JT, Butler WR et al. Phenotypic characterization of pncA mutants of Mycobacterium tuberculosis. Antimicrob. Agents Chemother.44(9), 2291–2295 (2000).
  • Hannan MM, Desmond EP, Morlock GP, Mazurek GH, Crawford JT. Pyrazinamide-monoresistant Mycobacterium tuberculosis in the United States. J. Clin. Micro.39(2), 647–650 (2001).
  • Sreevatsan S, Pan X, Zhang Y, Kreiswirth BN, Musser JM. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob. Agents Chemother.41(3), 636–640 (1997).
  • Shi W, Zhang X, Jiang X et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science333(6049), 1630–1633 (2011).
  • Alangaden GJ, Kreiswirth BN, Aouad A et al. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.42(5), 1295–1297 (1998).
  • Zaunbrecher MA, Sike RD, Metchock B, Shinnick TM, Posey JE. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA106(47), 20004–20009 (2009).
  • Maus CE, Plikaytis BB, Shinnick TM. Mutation of tlyA confers Capreomycin risistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.49(2), 571–577 (2005).
  • Almeida da Silva PE, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J. Antimicrob. Chemother.66(7), 1417–1430 (2011).
  • Takiff HE, Salazar L, Guerrero C et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob. Agents Chemother.38(4), 773–780 (1994).
  • Ginsburg AS, Grosset JH, Bishai WR. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis.3(7), 432–442 (2003).
  • von Groll A, Martin A, Jureen P et al. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB. Antimicrob. Agents Chemother.53(10), 4498–4500 (2009).
  • Sun Z, Zhang J, Zhang X et al. Comparison of gyrA gene mutations between laboratory-selected ofloxacin-resistant Mycobacterium tuberculosis strains and clinical isolates. Int. J. Antimicrob. Agents31(2), 115–121 (2008).
  • Ca’ceres NE, Harris NB, Wellehan JF et al. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J. Bacteriol.179(16), 5046–5055 (1997).
  • Richter E, Rusch-Gerdes S, Hillemann D. First linezolid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother.51(4), 1534–1536 (2007).
  • Mathys V, Wintjens R, Lefevre P et al. Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis. Antimicrob. Agents Chemother.53(5), 2100–2109 (2009).
  • Campbell PJ, Morlock G, Sikes RD et al. Molecular detection of mutations associated with first and second-line drug resistance compared with conventional drug susceptibility testing in M. tuberculosis. Antimicrob. Agents Chemother.55(5), 2032–2041 (2011).
  • Barnard M, Albert H, Coetzee G et al. Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa. Am. J. Respir. Crit. Care Med.177(7), 787–792 (2008).
  • Tortoli E, Marcelli F. Use of the INNO LiPA Rif.TB for detection of Mycobacterium tuberculosis DNA directly in clinical specimens and for simultaneous determination of rifampin susceptibility. Eur. J. Clin. Microbiol. Infect. Dis.26(1), 51–55 (2007).
  • Hillemann D, Rusch-Gerdes S, Richter E. Feasibility of the genotype MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J. Clin. Microbiol.47(6), 1767–1772 (2009).
  • Kiet VS, Lan NT, An DD et al. Evaluation of the MTBDRsl test for detection of second line drug resistance in Mycobacterium tuberculosis. J. Clin. Microbiol.48(8), 2934–2939 (2010).
  • Li XZ, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.48, 2415–2423 (2010).
  • Helb D, Jones M, Story E et al. Rapid detection of Mycobacterium tuberculosis and rifampin-resistance using on-demand, near patient technology. J. Clin. Microbiol.48(1), 229–337 (2010).
  • Boehme CC, Nabeta P, Hillemann D et al. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med.363(11), 1005–1015 (2010).
  • Scott LE, McCarthy K, Gous N et al. Comparison of Xpert MTB/RIF with other nucleic acid technologies for diagnosing pulmonary tuberculosis in a high HIV prevalence setting: a prospective study. PLoS Med.8(7), E1001061 (2011).
  • Lawn SD, Nichol MP. Xpert MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol.6(9), 1067–1082 (2011).
  • Louw GE, Warren RM, van Pittius NCG et al. A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob. Agents Chemother.53(8), 3181–3189 (2009).
  • Palomino JC, Martin A, Portaels F. Rapid drug resistance detection in Mycobacterium tuberculosis: a review of colourimetric methods. Clin. Microbiol. Infect.13(8), 754–762 (2007).
  • Martin A, Camacho M, Portaels F, Palomino JC. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method. Antimicrob. Agents Chemother.47(11), 3616–3619 (2003).
  • Martin A, Montoro E, Lemus D et al. Multicenter evaluation of the nitrate reductase assay for drug resistance detection of Mycobacterium tuberculosis. J. Microbiol. Methods63(2), 145–150 (2005).
  • Caviedes L, Lee TS, Gilman RH et al. Rapid, efficient detection and drug susceptibility testing of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures. The tuberculosis working group in Peru. J. Clin. Microbiol.38(3), 1203–1208 (2000).
  • Moore DA, Evans CA, Gilman RH et al. Microscopic-observation drug susceptibility assay for the diagnosis of TB. N. Engl. J. Med.355(15), 1539–1550 (2006).
  • Oberhelman RA, Soto-Castellares G, Caviedes L et al. Improved recovery of Mycobacterium tuberculosis from children using the microscopic observation drug susceptibility method. Pediatrics118, E100–E106 (2006).
  • Tovar M, Siedner MJ, Gilman RH et al. Improved diagnosis of pleural tuberculosis using the microscopic-observation drug-susceptibility technique. Clin. Infect. Dis.46(6), 909–912 (2008).
  • Shah NS, Moodley P, Babaria P et al. Rapid diagnosis of TB and multidrug resistance using the Microscopic-observation drug-susceptibility (MODS) assay in a high HIV prevalence setting in South Africa. Am. J. Respir. Crit. Care Med.183(10), 1427–1433 (2010).
  • Salim AH, Aung KJM, Hossain MA, Van Deun A. Early and rapid microscopy-based diagnosis of true treatment failure and MDR-TB. Int. J. Tuberc. Lung Dis.10(11), 1248–1254 (2006).
  • McNerney R, Kambashi BS, Kinkese J et al. Development of a bacteriophage phage replication assay for diagnosis of pulmonary tuberculosis. J. Clin. Microbiol.42(5), 2115–2120 (2004).
  • Kalantri S, Pai M, Pascopella L et al. Bacteriophage-based tests for the detection of Mycobacterium tuberculosis in clinical specimens: a systematic review and metaanalysis. BMC Infect. Dis.5, 59 (2005).
  • Garza-Gonzalez E, Guerrero-Olazaran M, Tijerina-Menchaca R, Viader-Salvado JM. Determination of drug susceptibility of Mycobacterium tuberculosis through mycolic acid analysis. J. Clin. Microbiol.35(5), 1287–1289 (1997).
  • Parrish N, Osterhout G, Dionne K et al. Rapid, standardized method for determination of Mycobacterium tuberculosis drug susceptibility by use of mycolic acid analysis. J. Clin. Microbiol.45(12), 3915–3920 (2007).
  • Jacobson KR, Tierney DB, Jeon CY et al. Treatment outcomes among patients with extensively drug-resistant tuberculosis: systematic review and meta-analysis. Clin. Infect. Dis.51(1), 6–14 (2010).
  • Mitnick CD, Shin SS, Seung KJ et al. Comprehensive treatment of extensively drug-resistant tuberculosis. N. Engl. J. Med.359(6), 563–574 (2008).
  • Jugheli L, Bzekalava N, de Rijk P et al. High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Antimicrob. Agents Chemother.55(12), 5064–5068 (2009).
  • Pholwat S, Heysell SK, Stroup S et al. Rapid first and second line drug susceptibility assay for tuberculosis using qPCR. J. Clin. Microbiol.49(1), 69–75 (2010).
  • Pholwat S, Ehdaie B, Foonglada S, Kelley K, Houpt E. Real-time PCR of Mycobacteriophage for rapid phenotypic drug susceptibility results for M. tuberculosis. J. Clin. Microbiol.50(3), 754–761 (2011).
  • Minion J, Pai M. Bacteriophage assays for rifampicin resistance detection in Mycobacterium tuberculosis: updated meta-analysis. Int. J. Tuberc. Lung Dis.14(8), 941–951 (2010).
  • Andrews J, Gandhi N, Moodley P et al. Exogenous re-infection as a cause of multi-drug resistant and extensively drug-resistant tuberculosis in rural South Africa. J. Infect. Dis.198, 1582 (2008).
  • Cox HS, Sibilia K, Feuerriegel S et al. Emergence of extensive drug resistance during treatment for multidrug-resistant tuberculosis. N. Engl. J. Med.359(22), 2398–2400 (2008).
  • Rich ML, Socci AR, Mitnick CD et al. Representative drug susceptibility patterns for guiding design of retreatment regimens for MDR-TB. Int. J. Tuberc. Lung Dis.10(3), 290–296 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.