205
Views
12
CrossRef citations to date
0
Altmetric
Review

Epigenetics of estrogen receptor-negative primary breast cancer

, , &
Pages 371-382 | Published online: 09 Jan 2014

References

  • American Cancer Society. Cancer Facts Figures. American Cancer Society, GA, USA, 9 (2009).
  • Brinkman JA, El-Ashry D. ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers. J. Mammary Gland Biol. Neoplasia14(1), 67–78 (2009).
  • Dworkin AM, Huang TH, Toland AE. Epigenetic alterations in the breast: implications for breast cancer detection, prognosis and treatment. Semin. Cancer Biol.19(3), 165–171 (2009).
  • Duffy MJ. Estrogen receptors: role in breast cancer. Crit. Rev. Clin. Lab. Sci.43(4), 325–347 (2006).
  • Rusiecki JA, Holford TR, Zahm SH, Zheng T. Breast cancer risk factors according to joint estrogen receptor and progesterone receptor status. Cancer Detect Prev.29(5), 419–426 (2005).
  • Li Q, Eklund AC, Juul N et al. Minimising immunohistochemical false negative ER classification using a complementary 23 gene expression signature of ER status. PLoS One5(12), e15031 (2010).
  • Hammond ME, Hayes DF, Dowsett M et al. American Society of Clinical oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol.28(16), 2784–2795 (2010).
  • Saxena NK, Sharma D. Epigenetic reactivation of estrogen receptor: promising tools for restoring response to endocrine therapy. Mol. Cell. Pharmacol.2(5), 191–202 (2010).
  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev.23(7), 781–783 (2009).
  • Esteller M. Epigenetics in cancer. N. Engl. J. Med.358(11), 1148–1159 (2008).
  • Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat. Med.17(3), 330–339 (2011).
  • Davoren PA, McNeill RE, Lowery AJ, Kerin MJ, Miller N. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol. Biol.9, 76 (2008).
  • Frankel LB, Christoffersen NR, Jacobsen A et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem.283(2), 1026–1033 (2008).
  • Iorio MV, Ferracin M, Liu CG et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.65(16), 7065–7070 (2005).
  • Si ML, Zhu S, Wu H et al. miR-21-mediated tumor growth. Oncogene26(19), 2799–2803 (2007).
  • Sunami E, Shinozaki M, Sim MS et al. Estrogen receptor and HER2/ν status affect epigenetic differences of tumor-related genes in primary breast tumors. Breast Cancer Res.10(3), R46 (2008).
  • van Hoesel AQ, van de Velde CJ, Kuppen PJ et al. Primary tumor classification according to methylation pattern is prognostic in patients with early stage ER-negative breast cancer. Breast Cancer Res. Treat.131(3), 859–869 (2012).
  • Schinke C, Mo Y, Yu Y et al. Aberrant DNA methylation in malignant melanoma. Melanoma Res.20(4), 253–265 (2010).
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell128(4), 683–692 (2007).
  • Portela A, Esteller M. Epigenetic modifications and human disease. J. Nat. Biotechnol.28(10), 1057–1068 (2010).
  • Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis31(1), 27–36 (2010).
  • Huang TH, Esteller M. Chromatin remodeling in mammary gland differentiation and breast tumorigenesis. Cold Spring Harb. Perspect. Biol.2(9), A004515 (2010).
  • Jovanovic J, Ronneberg JA, Tost J, Kristensen V. The epigenetics of breast cancer. Mol. Oncol.4(3), 242–254 (2010).
  • Lo PK, Sukumar S. Epigenomics and breast cancer. Pharmacogenomics9(12), 1879–1902 (2008).
  • Pathiraja TN, Stearns V, Oesterreich S. Epigenetic regulation in estrogen receptor positive breast cancer–role in treatment response. J. Mammary Gland Biol. Neoplasia15(1), 35–47 (2010).
  • Shinozaki M, Hoon DS, Giuliano AE et al. Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin. Cancer Res.11(6), 2156–2162 (2005).
  • Sharma G, Mirza S, Parshad R et al. CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients. Clin. Biochem.43(4–5), 373–379 (2010).
  • Sunami E, Vu AT, Nguyen SL, Giuliano AE, Hoon DS. Quantification of LINE1 in circulating DNA as a molecular biomarker of breast cancer. Ann. N. Y. Acad. Sci.1137, 171–174 (2008).
  • Jenuwein T, Allis CD. Translating the histone code. Science293(5532), 1074–1080 (2001).
  • Kouzarides T. Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Cao R, Wang L, Wang H et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science298(5595), 1039–1043 (2002).
  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev.16(22), 2893–2905 (2002).
  • Vire E, Brenner C, Deplus R et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature439(7078), 871–874 (2006).
  • Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development132(21), 4645–4652 (2005).
  • Davis BN, Hata A. microRNA in cancer – the involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer1(11), 1100–1114 (2010).
  • Calin GA, Croce CM. MicroRNA–cancer connection: the beginning of a new tale. Cancer Res.66(15), 7390–7394 (2006).
  • Asaga S, Kuo C, Nguyen T et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin. Chem.57(1), 84–91 (2011).
  • Yan LX, Huang XF, Shao Q et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA14(11), 2348–2360 (2008).
  • Lapidus RG, Nass SJ, Butash KA et al. Mapping of ER gene CpG island methylation-specific polymerase chain reaction. Cancer Res.58(12), 2515–2519 (1998).
  • Ottaviano YL, Issa JP, Parl FF et al. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res.54(10), 2552–2555 (1994).
  • Ferguson AT, Lapidus RG, Baylin SB, Davidson NE. Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res.55(11), 2279–2283 (1995).
  • Yan L, Nass SJ, Smith D et al. Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-α (ER) in ER-negative human breast cancer cell lines. Cancer Biol. Ther.2(5), 552–556 (2003).
  • Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat. Genet.25(3), 269–277 (2000).
  • Leu YW, Yan PS, Fan M et al. Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res.64(22), 8184–8192 (2004).
  • Pandey DP, Picard D. miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor α mRNA. Mol. Cell. Biol.29(13), 3783–3790 (2009).
  • Park SY, Kwon HJ, Lee HE et al. Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch.458, 73–84 (2011).
  • Melnikov AA, Scholtens DM, Wiley EL, Khan SA, Levenson VV. Array-based multiplex analysis of DNA methylation in breast cancer tissues. J. Mol. Diagn.10(1), 93–101 (2008).
  • Chen KM, Stephen JK, Raji U, Worsham MJ. Delineating an epigenetic continuum for initiation, transformation and progression to breast cancer. Cancers (Basel)3(2), 1580–1592 (2011).
  • Pasquali L, Bedeir A, Ringquist S et al. Quantification of CpG island methylation in progressive breast lesions from normal to invasive carcinoma. Cancer Lett.257(1), 136–144 (2007).
  • Hoque MO, Prencipe M, Poeta ML et al. Changes in CpG islands promoter methylation patterns during ductal breast carcinoma progression. Cancer Epidemiol. Biomarkers Prev.18(10), 2694–2700 (2009).
  • Marzese DM, Gago FE, Vargas-Roig LM, Roqué M. Simultaneous analysis of the methylation profile of 26 cancer related regions in invasive breast carcinomas by MS-MLPA and drMS-MLPA. Mol. Cell. Probes24(5), 271–280 (2010).
  • van Hoesel AQ, van de Velde CJH, Kuppen PJK et al. Hypomethylation of LINE-1 in primary tumor has poor prognosis in young breast cancer patients: a retrospective cohort study. Breast Cancer Res. Treat. doi:10.1007/s10549-012-2038-0 (2012) (Epub ahead of print).
  • Toyota M, Ahuja N, Ohe-Toyota M et al. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA96(15), 8681–8686 (1999).
  • Kusano M, Toyota M, Suzuki H et al. Genetic, epigenetic, and clinicopathologic features of gastric carcinomas with the CpG island methylator phenotype and an association with Epstein–Barr virus. Cancer106(7), 1467–1479 (2006).
  • Tanemura A, Terando AM, Sim MS et al. CpG island methylator phenotype predicts progression of malignant melanoma. Clin. Cancer Res.15(5), 1801–1807 (2009).
  • Fang F, Turcan S, Rimner A et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci. Transl. Med.3(75), 75ra25 (2011).
  • Jing F, Yuping W, Yong C et al. CpG island methylator phenotype of multigene in serum of sporadic breast carcinoma. Tumour Biol.31(4), 321–331 (2010).
  • Roll JD, Rivenbark AG, Jones WD, Coleman WB. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol. Cancer7, 15 (2008).
  • Hazan RB, Qiao R, Keren R, Badano I, Suyama K. Cadherin switch in tumor progression. Ann. N. Y. Acad. Sci.1014, 155–163 (2004).
  • Berx G, van Roy F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb. Perspect. Biol.1(6), A003129 (2009).
  • Acs G, Lawton TJ, Rebbeck TR, LiVolsi VA, Zhang PJ. Differential expression of E-cadherin in lobular and ductal neoplasms of the breast and its biologic and diagnostic implications. Am. J. Clin. Pathol.115(1), 85–98 (2001).
  • Droufakou S, Deshmane V, Roylance R, Hanby A, Tomlinson I, Hart IR. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int. J. Cancer92(3), 404–408 (2001).
  • Caldeira JRF, Prando EC, Quevedo FC, Neto FAM, Rainho CA, Rogatto SR. CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer6, 48 (2006).
  • Nass SJ, Herman JG, Gabrielson E et al. Aberrant methylation of the estrogen receptor and E-cadherin in 5’ CpG islands increases with malignant progression in breast cancer. Cancer Res.60(16), 4346–4348 (2000).
  • Zou D, Yoon HS, Perez D, Weeks RJ, Guilford P, Humar B. Epigenetic silencing in non-neoplastic epithelia identifies E-cadherin (CDH1) as a target for chemoprevention of lobular neoplasia. J. Pathol.218(2), 265–272 (2009).
  • de Maat MF, Narita N, Benard A et al. Development of sporadic microsatellite instability in colorectal tumors involves hypermethylation at methylated-in-tumor loci in adenoma. Am. J. Pathol.177(5), 2347–2356 (2010).
  • Toyota M, Ahuja N, Suzuki H et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res.59(21), 5438–5442 (1999).
  • Feng W, Shen L, Wen S et al. Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res.9(4), R57 (2007).
  • Holm K, Hegardt C, Staaf J et al. Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res.12(3), R36 (2010).
  • Flanagan JM, Cocciardi S, Waddell N et al. DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status. Am. J. Hum. Genet.86(3), 420–433 (2010).
  • Lowery AJ, Miller N, Devaney A et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/ν receptor status in breast cancer. Breast Cancer Res.11(3), R27 (2009).
  • Orlando L, Schiavone P, Fedele P et al. Molecularly targeted endocrine therapies for breast cancer. Cancer Treat. Rev.36(Suppl. 3), S67–S71 (2010).
  • Mori T, Martinez SR, O’Day SJ et al. Estrogen receptor-α methylation predicts melanoma progression. Cancer Res.66(13), 6692–6698 (2006).
  • Cittelly DM, Das PM, Spoelstra NS et al. Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol. Cancer9, 317 (2010).
  • Issa JP, Kantarjian HM. Targeting DNA methylation. Clin. Cancer Res.15(12), 3938–3946 (2009).
  • Kantarjian HM, O’Brien S, Huang X et al. Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: comparison with historical experience. Cancer109(6), 1133–1137 (2007).
  • Munster PN, Thurn KT, Thomas S et al. A Phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br. J. Cancer104(12), 1828–1835 (2011).
  • Fan J, Yin WJ, Lu JS et al. ER α negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J. Cancer Res. Clin. Oncol.134(8), 883–890 (2008).
  • Sharma D, Saxena NK, Davidson NE, Vertino PM. Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res.66(12), 6370–6378 (2006).
  • Keen JC, Yan L, Mack KM et al. A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor α (ER) in ER negative human breast cancer cells in combination with 5-aza 2'-deoxycytidine. Breast Cancer Res. Treat.81(3), 177–186 (2003).
  • Zhou Q, Atadja P, Davidson NE. Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor α (ER) gene expression without loss of DNA hypermethylation. Cancer Biol. Ther.6(1), 64–69 (2007).
  • Yang X, Ferguson AT, Nass SJ et al. Transcriptional activation of estrogen receptor α in human breast cancer cells by histone deacetylase inhibition. Cancer Res.60(24), 6890–6894 (2000).
  • Kondo Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med. J.50(4), 455–463 (2009).
  • Elsheikh SE, Green AR, Rakha EA et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res.69(9), 3802–3809 (2009).
  • Kleer CG, Cao Q, Varambally S et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA100(20), 11606–11611 (2003).
  • Xiong J, Yu D, Wei N et al. An estrogen receptor α suppressor, microRNA-22, is downregulated in estrogen receptor α-positive human breast cancer cell lines and clinical samples. FEBS J.277(7), 1684–1694 (2010).
  • Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERα) and represses ERα messenger RNA and protein expression in breast cancer cell lines. Mol. Endocrinol.21(5), 1132–1147 (2007).
  • Zhao JJ, Lin J, Yang H et al. MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem.283(45), 31079–31086 (2008).
  • Billam M, Sobolewski MD, Davidson NE. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res. Treat.120, 581–592 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.