542
Views
44
CrossRef citations to date
0
Altmetric
Review

Handling and analysis of cells and bioparticles on centrifugal microfluidic platforms

&
Pages 407-421 | Published online: 09 Jan 2014

References

  • Englert DL, Manson MD, Jayaraman A. Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl. Environ. Microbiol.75(13), 4557–4564 (2009).
  • Yu HM, Meyvantsson I, Shkel IA, Beebe DJ. Diffusion dependent cell behavior in microenvironments. Lab. Chip5(10), 1089–1095 (2005).
  • Reyes D, Iossifidis D, Auroux P, Manz A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem.74(12), 2623–2636 (2002).
  • Vilkner T, Janasek D, Manz A. Micro total analysis systems. Recent developments. Anal. Chem.76(12), 3373–3385 (2004).
  • Auroux P, Iossifidis D, Reyes D, Manz A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem.74(12), 2637–2652 (2002).
  • Weibel DB, DiLuzio WR, Whitesides GM. Microfabrication meets microbiology. Nat. Rev. Microbiol.5(3), 209–218 (2007).
  • Andersson H, van den Berg A. Microfluidic devices for cellomics: a review. Sens. Actuator B-Chem.92(3), 315–325 (2003).
  • Huh D, Gu W, Kamotani Y, Grotberg J, Takayama S. Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas.26(3), R73–R98 (2005).
  • Erickson D, Li D. Integrated microfluidic devices. Anal. Chim. Acta507(1), 11–26 (2004).
  • Andersson-Svahn H, van den Berg A. Single cells or large populations? Lab. Chip7(5), 544–546 (2007).
  • El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature442(7101), 403–411 (2006).
  • Lindström S, Andersson-Svahn H. Overview of single-cell analyses: microdevices and applications. Lab. Chip10(24), 3363–3372 (2010).
  • Yi C, Li C, Ji S, Yang M. Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta560(1–2), 1–23 (2006).
  • Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT. Microfluidics for cell separation. Med. Biol. Eng. Comput.48(10), 999–1014 (2010).
  • Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N. Lab on a CD. Annu. Rev. Biomed. Eng.8, 601–628 (2006).
  • Ducrée J, Haeberle S, Lutz S, Pausch S, von Stetten F, Zengerle R. The centrifugal microfluidic bio-disk platform. J. Micromech. Microeng.17(7), S103–S115 (2007).
  • Rocco RM. Landmark papers in clinical chemistry. Elsevier Science, Amsterdam, The Netherlands, 2005.
  • Burtis C, Anderson N, Mailen J, Scott C, Tiffany T, Johnson W. Development of a miniature fast analyzer. Clin. Chem.18(8), 753–761 (1972).
  • Burtis C, Johnson W, Mailen J, Overton J, Tiffany T, Watsky M. Development of an analytical system based around a miniature fast analyzer. Clin. Chem.19(8), 895–903 (1973).
  • Mark D, Metz T, Haeberle S et al. Centrifugo-pneumatic valve for metering of highly wetting liquids on centrifugal microfluidic platforms. Lab. Chip9(24), 3599–3603 (2009).
  • Cho YK, Lee JG, Park JM, Lee BS, Lee Y, Ko C. One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab. Chip7(5), 565–573 (2007).
  • Abi-Samra K, Hanson R, Madou M, Gorkin RA 3rd. Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab. Chip11(4), 723–726 (2011).
  • Park J, Cho Y, Lee B, Lee J, Ko C. Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab. Chip7(5), 557–564 (2007).
  • Siegrist J, Gorkin R, Clime L et al. Serial siphon valving for centrifugal microfluidic platforms. Microfluidics Nanofluidics9(1), 55–63 (2010).
  • Steigert J, Brenner T, Grumann M et al. Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk. Biomed. Microdevices9(5), 675–679 (2007).
  • Andersson P, Jesson G, Kylberg G, Ekstrand G, Thorsen G. Parallel nanoliter microfluidic analysis system. Anal. Chem.79(11), 4022–4030 (2007).
  • Ducrée J, Brenner T, Haeberle S, Glatzel T, Zengerle R. Multilamination of flows in planar networks of rotating microchannels. Microfluidics Nanofluidics2(1), 78–84 (2006).
  • Ducrée J, Haeberle S, Brenner T, Glatzel T, Zengerle R. Patterning of flow and mixing in rotating radial microchannels. Microfluidics Nanofluidics2(2), 97–105 (2006).
  • Grumann M, Geipel A, Riegger L, Zengerle R, Ducrée J. Batch-mode mixing on centrifugal microfluidic platforms. Lab. Chip.5(5), 560–565 (2005).
  • Bynum M, Gordon G. Hybridization enhancement using microfluidic planetary centrifugal mixing. Anal. Chem.76(23), 7039–7044 (2004).
  • Noroozi Z, Kido H, Micic M et al. Reciprocating flow-based centrifugal microfluidics mixer. Rev. Sci. Instrum.80(7), 075102 (2009).
  • Gorkin R, Park J, Siegrist J et al. Centrifugal microfluidics for biomedical applications. Lab. Chip10(14), 1758–1773 (2010).
  • Lee WC, Bhagat AAS, Huang S, Van Vliet KJ, Han J, Lim CT. High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab. Chip11(7), 1359–1367 (2011).
  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I. Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab. Chip8(11), 1906–1914 (2008).
  • Ookawara S, Higashi R, Street D, Ogawa K. Feasibility study on concentration of slurry and classification of contained particles by microchannel. Chem. Eng. J.101(1–3), 171–178 (2004).
  • Ookawara S, Street D, Ogawa K. Numerical study on development of particle concentration profiles in a curved microchannel. Chem. Eng. Sci.61(11), 3714–3724 (2006).
  • Bhagat AAS, Kuntaegowdanahalli SS, Kaval N, Seliskar CJ, Papautsky I. Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed. Microdevices12(2), 187–195 (2010).
  • Seo J, Lean MH, Kole A. Membrane-free microfiltration by asymmetric inertial migration. Appl. Phys. Lett.91(3), 033901–033903 (2007).
  • Blattert C, Jurischka R, Tahhan I, Schoth A, Kerth P, Menz W. Separation of blood cells and plasma in microchannel bend structures. Presented at: 8th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Malmo, Sweden, 26–30 September 2004.
  • Blattert C, Jurischka R, Tahhan I, Schoth A, Kerth P, Menz W. Separation of blood in microchannel bends. Presented at: Engineering in Medicine and Biology Society, 2004. IEMBS ‘04. 26th Annual International Conference of the IEEE. 1–5 September 2004.
  • Amasia M, Madou M. Large-volume centrifugal microfluidic device for blood plasma separation. Bioanalysis2(10), 1701–1710 (2010).
  • Haeberle S, Brenner T, Zengerle R, Ducrée J. Centrifugal extraction of plasma from whole blood on a rotating disk. Lab. Chip6(6), 776–781 (2006).
  • Zhang JL, Guo QQ, Liu M, Yang J. A lab-on-CD prototype for high-speed blood separation. J. Micromech. Microeng.18(12), (2008).
  • Schembri CT, Burd TL, Kopfsill AR, Shea LR, Braynin B. Centrifugation and capillarity integrated into a multiple analyte whole-blood analyzer. J. Automat. Chem.17(3), 99–104 (1995).
  • Burger R, Reis N, Fonseca JG, Ducrée J. Blood separation based on pressure driven membrane deflection. Presented at: The 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences (uTAS). Jeju, South Korea, 1–5 November 2009.
  • Lee BS, Lee J, Park J et al. A fully automated immunoassay from whole blood on a disc. Lab. Chip9(11), 1548–1555 (2009).
  • Lutz S, Lang P, Faltin B et al. Towards a comprehensive centrifugal process integration by rotationally induced lyophilisate dissolution and cell lysis. Presented at: 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Paris, France, 7–11 October 2007.
  • Kellogg GJ, Arnold TE, Carvalho BL, Duffy DC, Sheppard NF. Centrifugal microfluidics: applications. Presented at: 4th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Twente, The Netherlands, 14–18 May 2000.
  • Klepárnik K, Horky M. Detection of DNA fragmentation in a single apoptotic cardiomyocyte by electrophoresis on a microfluidic device. Electrophoresis24(21), 3778–3783 (2003).
  • Kido H, Micic M, Smith D, Zoval J, Norton J, Madou M. A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. Colloids Surfaces B-Biointerfaces58(1), 44–51 (2007).
  • Siegrist J, Gorkin R, Bastien M et al. Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab. Chip10(3), 363–371 (2010).
  • Kim J, Jang SH, Jia GY, Zoval JV, Da Silva NA, Madou MJ. Cell lysis on a microfluidic CD (compact disc). Lab. Chip4(5), 516–522 (2004).
  • Riegger L, Grumann M, Steigert J et al. Single-step centrifugal hematocrit determination on a 10-$ processing device. Biomed. Microdevices9(6), 795–799 (2007).
  • Garcia-Cordero JL, Barrett LM, O’Kennedy R, Ricco AJ. Microfluidic sedimentation cytometer for milk quality and bovine mastitis monitoring. Biomed. Microdevices12(6), 1051–1059 (2010).
  • Schaff UY, Tentori AM, Sommer GJ. Differential white cell count by centrifugal microfluidics. Presented at: 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Groningen, The Netherlands, 3–7 October 2010.
  • Chen P, Feng X, Hu R, Sun J, Du W, Liu B. Hydrodynamic gating valve for microfluidic fluorescence-activated cell sorting. Anal. Chim. Acta663(1), 1–6 (2010).
  • Wang L, Flanagan LA, Jeon NL, Monuki E, Lee AP. Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab. Chip7(9), 1114–1120 (2007).
  • Voldman J, Gray ML, Toner M, Schmidt MA. A microfabrication-based dynamic array cytometer. Anal. Chem.74(16), 3984–3990 (2002).
  • Doh I, Cho Y. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens. Actuators A-Phys.121(1), 59–65 (2005).
  • Yellen BB, Erb RM, Son HS, Hewlin R, Shang H, Lee GU. Traveling wave magnetophoresis for high resolution chip based separations. Lab. Chip7(12), 1681–1688 (2007).
  • Di Carlo D. Inertial microfluidics. Lab. Chip9(21), 3038–3046 (2009).
  • Hur SC, Tse HTK, Di Carlo D. Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab. Chip10(3), 274–280 (2010).
  • Oakey J, Applegate RW, Arellano E, Di Carlo D, Graves SW, Toner M. Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal. Chem.82(9), 3862–3867 (2010).
  • Shiono H, Ito Y. Novel method for continuous cell separation by density gradient centrifugation: evaluation of a miniature separation column. Prep. Biochem. Biotechnol.33(2), 87–100 (2003).
  • Shiono H, Chen HM, Okada T, Ito Y. Colony-forming cell assay for human hematopoietic progenitor cells harvested by a novel continuous-flow cell separation method. J. Chromatogr. A1151(1–2), 153–157 (2007).
  • Shiono H, Okada T, Ito Y. Application of a novel continuous-flow cell separation method for separation of cultured human mast cells. J. Liq. Chromatogr. Rel. Technol.28(12–13), 2071–2083 (2005).
  • Yamada M, Nakashima M, Seki M. Pinched-flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem.76(18), 5465–5471 (2004).
  • Morijiri T, Sunahiro S, Senaha M, Yamada M, Seki M. Sedimentation pinched-flow fractionation for size- and density-based particle sorting in microchannels. Microfluidics Nanofluidics11(1), 105–110 (2011).
  • Banfalvi G. Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nat. Protoc.3(4), 663–673 (2008).
  • Donaldson K, McShea A, Wahl A. Separation by counterflow centrifugal elutriation and analysis of T- and B-lymphocytic cell lines in progressive stages of cell division cycle. J. Immunol. Methods203(1), 25–33 (1997).
  • Morijiri T, Hikida T, Yamada M, Seki M. Microfluidic counterflow centrifugal elutriation for cell separation using density-gradient media. Presented at: 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (uTAS). Groningen, The Netherlands, 3–7 October 2010.
  • Martinez-Duarte R, Gorkin RA 3rd, Abi-Samra K, Madou MJ. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab. Chip10(8), 1030–1043 (2010).
  • Boettcher M, Jaeger MS, Riegger L, Ducrée J, Zengerle R, Duschl C. Lab-on-chip-based cell separation by combining dielectrophoresis and centrifugation. Biophys. Rev. Lett.1(4), 443–451 (2006).
  • Pamme N. Magnetism and microfluidics. Lab. Chip6(1), 24–38 (2006).
  • Bronzeau S, Pamme N. Simultaneous bioassays in a microfluidic channel on plugs of different magnetic particles. Anal. Chim. Acta609(1), 105–112 (2008).
  • Pamme N, Wilhelm C. Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab. Chip6(8), 974–980 (2006).
  • Siegrist J, Zavattoni L, Burger R, Ducrée J. 2-dimensional separation of biomimetic particles by stopped-flow centrifugo-magnetophoresis. Presented at: 16th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers). Beijing, China, 5–9 June 2011.
  • Siegrist J, Burger R, Kirby D, Zavattoni L, Kijanka G, Ducrée J. Stress-free centrifugo-magnetic 2D-separation of cancer cells in a stopped-flow mode. Presented at: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (uTAS). Seattle, USA, 2–6 October 2011.
  • Siegrist J, Zavattoni L, Ducrée J. Centrifugo-magnetophoretic separation and routing of particles. Presented at: IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS). Cancun, Mexico, 23–27 January 2011.
  • Chen C, Chen K, Pan Y et al. Separation and detection of rare cells in a microfluidic disk via negative selection. Lab. Chip11(3), 474–483 (2011).
  • Chen K, Lee T, Pan Y et al. Detection of circulating endothelial cells via a microfluidic disk. Clin. Chem.57(4), 586–592 (2011).
  • Häberle S, Naegele L, Burger R, Von Stetten F, Zengerle R, Ducrée J. Alginate bead fabrication and encapsulation of living cells under centrifugally induced artificial gravity conditions. J. Microencapsul.25(4), 267–274 (2008).
  • Kubo I, Furutani S, Matoba K. Use of a novel microfluidic disk in the analysis of single-cell viability and the application to Jurkat cells. J. Biosci. Bioeng.112(1), 98–101 (2011).
  • Lee S, Kang JY, Lee I et al. Single-cell assay on CD-like lab chip using centrifugal massive single-cell trap. Sens. Actuators A Phys.143(1), 64–69 (2008).
  • Furutani S, Nagai H, Takamura Y, Kubo I. Compact disk (CD)-shaped device for single cell isolation and PCR of a specific gene in the isolated cell. Anal. Bioanal. Chem.398(7–8), 2997–3004 (2010).
  • Chen H, Li X, Wang L, Li PCH. A rotating microfluidic array chip for staining assays. Talanta81(4–5), 1203–1208 (2010).
  • Riegger L, Grumann M, Nann T et al. Read-out concepts for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sens. Actuators A Phys.126(2), 455–462 (2006).
  • Burger R, Reith P, Kijanka G, Akujobi V, Abgrall P, Ducrée J. Array-based capture, distribution, counting and multiplexed assaying of beads on a centrifugal microfluidic platform. Lab. Chip (7), 1295 (2012).
  • Burger R, Reith P, Abgrall P, Kijanka G, Ducrée J. Multiplexing of highly reproducible, bead-based immunoassays on a centrifugal microfluidic platform. Presented at: 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS). Cancun, Mexico, 23–27 January 2011.
  • Burger R, Kijanka G, Sheils O, O’Leary J, Ducrée J. Arrayed capture, assaying and binary counting of cells in a stopped-flow sedimentation mode. Presented at: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (uTAS). Seattle, Washington, USA, 2–6 October 2011.
  • Burger R, Reith P, Abgrall P, Ducrée J. Integration of high-efficiency capture and magneto-hydrodynamic retrieval of particles on a centrifugal microfluidic platform. Presented at: 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS). Cancun, Mexico, 23–27 January 2011.
  • Cho H, Lee LP. A novel integrated microfluidic SERS-CD with high-throughput centrifugal cell trapping array for quantitative biomedicine. Presented at: The 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (uTAS). Tokyo, Japan, 5–9 November 2006.
  • Rothert A, Deo SK, Millner L, Puckett LG, Madou MJ, Daunert S. Whole-cell-reporter-gene-based biosensing systems on a compact disk microfluidics platform. Anal. Biochem.342(1), 11–19 (2005).
  • Date A, Pasini P, Daunert S. Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms. Anal. Bioanal. Chem.398(1), 349–356 (2010).
  • Kim N, Dempsey CM, Zoval JV, Sze J, Madou MJ. Automated microfluidic compact disc (CD) cultivation system of Caenorhabditis elegans. Sens. Actuators B Chem.122(2), 511–518 (2007).
  • Fan K, Lin C, Shyu L. The development of a low-cost focusing probe for profile measurement. Meas. Sci. Technol.11(1), N1–N7 (2000).
  • Bartoli A, Poggi P, Quercioli F, Tiribilli B. Fast one-dimensional profilometer with a compact disc pickup. Appl. Opt.40(7), 1044–1048 (2001).
  • Kostner S, Vellekoop MJ. Cell analysis in a microfluidic cytorneter applying a DVD pickup head. Sens. Actuator B Chem.132(2), 512–517 (2008).
  • Imaad SM, Lord N, Kulsharova G, Liu GL. Microparticle and cell counting with digital microfluidic compact disc using standard CD drive. Lab. Chip11(8), 1448–1456 (2011).
  • Chen H, Wang L, Li PCH. Nucleic acid microarrays created in the double-spiral format on a circular microfluidic disk. Lab. Chip8(5), 826–829 (2008).
  • La Clair J, Burkart M. Molecular screening on a compact disc. Org. Biomol. Chem.1(18), 3244–3249 (2003).
  • Morais S, Carrascosa J, Mira D, Puchades R, Maquieira A. Microimmunoanalysis on standard compact discs to determine low abundant compounds. Anal. Chem.79(20), 7628–7635 (2007).
  • Lange SA, Roth G, Wittemann S et al. Measuring biomolecular binding events with a compact disc player device. Angew. Chem.45(2), 270–273 (2006).
  • Barathur R, Bookout J, Sreevatsan S et al. New disc-based technologies for diagnostic and research applications. Psychiatr. Genet.12(4), 193–206 (2002).
  • Yu H. New chemistry on old CDs. Chem. Commun.23, 2633–2636 (2004).
  • Bosco FG, Hwu E, Chen C et al. High throughput label-free platform for statistical bio-molecular sensing. Lab. Chip11(14), 2411–2416 (2011).
  • Cristofanilli M, Budd G, Ellis M et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med.351(8), 781–791 (2004).
  • Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J. Cell. Biol.192(3), 373–382 (2011).
  • Nagrath S, Sequist LV, Maheswaran S et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature450(7173), 1235–1239 (2007).
  • Allard W, Matera J, Miller M et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res.10(20), 6897–6904 (2004).
  • Garcia-Cordero JL, Basabe-Desmonts L, Ducrée J, Ricco AJ. Liquid recirculation in microfluidic channels by the interplay of capillary and centrifugal forces. Microfluidics Nanofluidics9(4–5), 695–703 (2010).
  • Haeberle S, Schmitt N, Zengerle R, Ducrée J. Centrifugo-magnetic pump for gas-to-liquid sampling. Sens.Actuators A Phys.135(1), 28–33 (2007).
  • Haeberle S, Zengerle R, Ducrée J. Centrifugal generation and manipulation of droplet emulsions. Microfluidics Nanofluidics3(1), 65–75 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.