652
Views
142
CrossRef citations to date
0
Altmetric
Review

The cellular origin for malignant glioma and prospects for clinical advancements

, &
Pages 383-394 | Published online: 09 Jan 2014

References

  • Stupp R, Mason WP, Van Den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Raff MC, Abney ER, Fok-Seang J. Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation. Cell42(1), 61–69 (1985).
  • Raff MC, Williams BP, Miller RH. The in vitro differentiation of a bipotential glial progenitor cell. EMBO J.3(8), 1857–1864 (1984).
  • Wolswijk G, Noble M. Identification of an adult-specific glial progenitor cell. Development105(2), 387–400 (1989).
  • Rao MS, Mayer-Proschel M. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev. Biol.188(1), 48–63 (1997).
  • Nishiyama A, Komitova M, Suzuki R, Zhu X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat. Rev. Neurosci.10(1), 9–22 (2009).
  • Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N. Engl. J. Med.353(8), 811–822 (2005).
  • Canoll P, Goldman JE. The interface between glial progenitors and gliomas. Acta Neuropathol.116(5), 465–477 (2008).
  • Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science289(5485), 1754–1757 (2000).
  • Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P. Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J. Neurosci.26(25), 6781–6790 (2006).
  • Fomchenko EI, Dougherty JD, Helmy KY et al. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PLoS One6(7), e20605 (2011).
  • Stiles CD, Rowitch DH. Glioma stem cells: a midterm exam. Neuron58(6), 832–846 (2008).
  • Park DM, Rich JN. Biology of glioma cancer stem cells. Mol. Cells28(1), 7–12 (2009).
  • Rousseau A, Nutt Cl, Betensky RA et al. Expression of oligodendroglial and astrocytic lineage markers in diffuse gliomas: use of YKL-40, ApoE, ASCL1, and NKX2-2. J. Neuropathol. Exp. Neurol.65(12), 1149–1156 (2006).
  • Shoshan Y, Nishiyama A, Chang A et al. Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc. Natl Acad. Sci. USA96(18), 10361–10366 (1999).
  • Riemenschneider MJ, Koy TH, Reifenberger G. Expression of oligodendrocyte lineage genes in oligodendroglial and astrocytic gliomas. Acta Neuropathol.107(3), 277–282 (2004).
  • Sung CC, Collins R, Li J et al. Glycolipids and myelin proteins in human oligodendrogliomas. Glycoconj. J.13(3), 433–443 (1996).
  • Geha S, Pallud J, Junier MP et al. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol.20(2), 399–411 (2010).
  • Dawson MR, Polito A, Levine JM, Reynolds R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell Neurosci.24(2), 476–488 (2003).
  • Rhee W, Ray S, Yokoo H et al. Quantitative analysis of mitotic Olig2 cells in adult human brain and gliomas: implications for glioma histogenesis and biology. Glia57(5), 510–523 (2009).
  • Roy NS, Wang S, Harrison-Restelli C et al. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J. Neurosci.19(22), 9986–9995 (1999).
  • Bohman LE, Swanson KR, Moore JL et al. Magnetic resonance imaging characteristics of glioblastoma multiforme: implications for understanding glioma ontogeny. Neurosurgery67(5), 1319–1327; discussion 1327–1318 (2010).
  • Lim DA, Cha S, Mayo MC et al. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro. Oncol.9(4), 424–429 (2007).
  • Lai A, Kharbanda S, Pope WB et al. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J. Clin. Oncol.29(34), 4482–4490 (2011).
  • Johnson RA, Wright KD, Poppleton H et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature466(7306), 632–636 (2010).
  • Gibson P, Tong Y, Robinson G et al. Subtypes of medulloblastoma have distinct developmental origins. Nature468(7327), 1095–1099 (2010).
  • Curran WJ Jr, Scott CB, Horton J et al. Recursive partitioning analysis of prognostic factors in three radiation therapy oncology group malignant glioma trials. J. Natl Cancer Inst.85(9), 704–710 (1993).
  • Lawrence YR, Mishra MV, Werner-Wasik M et al. Improving prognosis of glioblastoma in the 21st century: Who has benefited most? Cancer doi:10.1002/cncr.26685 (2011) (Epub ahead of print).
  • Stoll EA, Habibi BA, Mikheev AM et al. Increased re-entry into cell cycle mitigates age-related neurogenic decline in the murine subventricular zone. Stem Cells29(12), 2005–2017 (2011).
  • Gritti A, Dal Molin M, Foroni C, Bonfanti L. Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations. J. Comp. Neurol.517(3), 333–349 (2009).
  • Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci.24(38), 8354–8365 (2004).
  • Molofsky AV, Slutsky SG, Joseph NM et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature443(7110), 448–452 (2006).
  • Medrano S, Burns-Cusato M, Atienza MB, Rahimi D, Scrable H. Regenerative capacity of neural precursors in the adult mammalian brain is under the control of p53. Neurobiol. Aging30(3), 483–497 (2009).
  • Glass R, Synowitz M, Kronenberg G et al. Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J. Neurosci.25(10), 2637–2646 (2005).
  • Wheeler CJ, Black KL, Liu G et al. Thymic CD8+ T cell production strongly influences tumor antigen recognition and age-dependent glioma mortality. J. Immunol.171(9), 4927–4933 (2003).
  • Kleihues P, Schauble B, Zur Hausen A, Esteve J, Ohgaki H. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am. J. Pathol.150(1), 1–13 (1997).
  • Druker BJ, Talpaz M, Resta DJ et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344(14), 1031–1037 (2001).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350(21), 2129–2139 (2004).
  • Paez JG, Janne PA, Lee JC et al.EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304(5676), 1497–1500 (2004).
  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455(7216), 1061–1068 (2008).
  • Chow LM, Endersby R, Zhu X et al. Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell19(3), 305–316 (2011).
  • Li A, Walling J, Ahn S et al. Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res.69(5), 2091–2099 (2009).
  • Liang Y, Diehn M, Watson N et al. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc. Natl Acad. Sci. USA102(16), 5814–5819 (2005).
  • Mischel PS, Shai R, Shi T et al. Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene22(15), 2361–2373 (2003).
  • Murat A, Migliavacca E, Gorlia T et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J. Clin. Oncol.26(18), 3015–3024 (2008).
  • Noushmehr H, Weisenberger DJ, Diefes K et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell17(5), 510–522 (2010).
  • Nutt CL, Mani DR, Betensky RA et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res.63(7), 1602–1607 (2003).
  • Phillips HS, Kharbanda S, Chen R et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell9(3), 157–173 (2006).
  • Sun L, Hui AM, Su Q et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell9(4), 287–300 (2006).
  • Verhaak RG, Hoadley KA, Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell17(1), 98–110 (2010).
  • Zheng S, Chheda MG, Verhaak RG. Studying a complex tumor: potential and pitfalls. Cancer J.18(1), 107–114 (2012).
  • Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron36(6), 1021–1034 (2002).
  • Brennan C, Momota H, Hambardzumyan D et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One4(11), e7752 (2009).
  • Pringle NP, Mudhar HS, Collarini EJ, Richardson WD. PDGF receptors in the rat CNS: during late neurogenesis, PDGFα-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development115(2), 535–551 (1992).
  • Chojnacki AK, Mak GK, Weiss S. Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat. Rev. Neurosci.10(2), 153–163 (2009).
  • Noble M, Murray K, Stroobant P, Waterfield MD, Riddle P. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature333(6173), 560–562 (1988).
  • Yan H, Parsons DW, Jin G et al.IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med.360(8), 765–773 (2009).
  • Turcan S, Rohle D, Goenka A et al.IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature483(7390), 479–483 (2012).
  • Vital AL, Tabernero MD, Crespo I et al. Intratumoral patterns of clonal evolution in gliomas. Neurogenetics11(2), 227–239 (2009).
  • Paulus W, Peiffer J. Intratumoral histologic heterogeneity of gliomas. A quantitative study. Cancer64(2), 442–447 (1989).
  • Ren ZP, Olofsson T, Qu M et al. Molecular genetic analysis of p53 intratumoral heterogeneity in human astrocytic brain tumors. J. Neuropathol. Exp. Neurol.66(10), 944–954 (2007).
  • Snuderl M, Fazlollahi L, Le LP et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell20(6), 810–817 (2011).
  • Szerlip NJ, Pedraza A, Chakravarty D et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc. Natl Acad. Sci. USA109(8), 3041–3046 (2012).
  • Durinck S, Ho C, Wang NJ et al. Temporal dissection of tumorigenesis in primary cancers. Cancer Discov.1(2), 137–143 (2011).
  • Holland EC, Hively WP, Depinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev.12(23), 3675–3685 (1998).
  • Reilly KM, Loisel DA, Bronson RT, Mclaughlin ME, Jacks T. Nf1; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat. Genet.26(1), 109–113 (2000).
  • Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell1(2), 157–168 (2002).
  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell97(6), 703–716 (1999).
  • Bachoo RM, Maher EA, Ligon KL et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell1(3), 269–277 (2002).
  • Zheng H, Ying H, Yan H et al. p53 and PTEN control neural and glioma stem/progenitor cell renewal and differentiation. Nature455(7216), 1129–1133 (2008).
  • Zhu Y, Guignard F, Zhao D et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell8(2), 119–130 (2005).
  • Alcantara Llaguno S, Chen J, Kwon CH et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell15(1), 45–56 (2009).
  • Uhrbom L, Hesselager G, Nister M, Westermark B. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res.58(23), 5275–5279 (1998).
  • Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev.15(15), 1913–1925 (2001).
  • Lindberg N, Kastemar M, Olofsson T, Smits A, Uhrbom L. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene28(23), 2266–2275 (2009).
  • Hambardzumyan D, Amankulor NM, Helmy KY, Becher OJ, Holland EC. Modeling adult gliomas using RCAS/t-va technology. Transl. Oncol.2(2), 89–95 (2009).
  • Lei L, Sonabend AM, Guarnieri P et al. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS One6(5), e20041 (2011).
  • Persson AI, Petritsch C, Swartling FJ et al. Non-stem cell origin for oligodendroglioma. Cancer Cell18(6), 669–682 (2010).
  • Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L. Mosaic analysis with double markers in mice. Cell121(3), 479–492 (2005).
  • Liu C, Sage JC, Miller MR et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell146(2), 209–221 (2011).
  • Zhu X, Bergles DE, Nishiyama A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development135(1), 145–157 (2008).
  • Casper KB, Mccarthy KD. GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol. Cell Neurosci.31(4), 676–684 (2006).
  • Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol.64(6), 479–489 (2005).
  • Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M. Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin. Cancer Res.11(3), 1119–1128 (2005).
  • Cahoy JD, Emery B, Kaushal A et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci.28(1), 264–278 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.