160
Views
10
CrossRef citations to date
0
Altmetric
Theme: Epigenomic applications - Review

Potential usefulness of DNA methylation as a risk marker for digestive cancer associated with inflammation

&
Pages 489-497 | Published online: 09 Jan 2014

References

  • Ushijima T, Watanabe N, Okochi E, Kaneda A, Sugimura T, Miyamoto K. Fidelity of the methylation pattern and its variation in the genome. Genome Res.13(5), 868–874 (2003).
  • Riggs AD, Xiong Z. Methylation and epigenetic fidelity. Proc. Natl Acad. Sci. USA101(1), 4–5 (2004).
  • Fazzari MJ, Greally JM. Introduction to epigenomics and epigenome-wide analysis. Methods Mol. Biol.620, 243–265 (2010).
  • Kondo Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med. J.50(4), 455–463 (2009).
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell128(4), 683–692 (2007).
  • Toyota M, Issa JP. Epigenetic changes in solid and hematopoietic tumors. Semin. Oncol.32(5), 521–530 (2005).
  • Ushijima T, Okochi-Takada E. Aberrant methylations in cancer cells: where do they come from? Cancer Sci.96(4), 206–211 (2005).
  • Suzuki H, Tokino T, Shinomura Y, Imai K, Toyota M. DNA methylation and cancer pathways in gastrointestinal tumors. Pharmacogenomics9(12), 1917–1928 (2008).
  • Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells. Nat. Rev. Cancer5(3), 223–231 (2005).
  • Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA96(15), 8681–8686 (1999).
  • Toyota M, Ahuja N, Suzuki H et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res.59(21), 5438–5442 (1999).
  • Toyota M, Ohe-Toyota M, Ahuja N, Issa JP. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc. Natl Acad. Sci. USA97(2), 710–715 (2000).
  • Kusano M, Toyota M, Suzuki H et al. Genetic, epigenetic, and clinicopathologic features of gastric carcinomas with the CpG island methylator phenotype and an association with Epstein–Barr virus. Cancer106(7), 1467–1479 (2006).
  • Ahn JB, Chung WB, Maeda O et al. DNA methylation predicts recurrence from resected stage III proximal colon cancer. Cancer117(9), 1847–1854 (2011).
  • Jover R, Nguyen TP, Pérez-Carbonell L et al. 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology140(4), 1174–1181 (2011).
  • Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat. Genet.7(4), 536–540 (1994).
  • Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res.58(23), 5489–5494 (1998).
  • Kwabi-Addo B, Chung W, Shen L et al. Age-related DNA methylation changes in normal human prostate tissues. Clin. Cancer Res.13(13), 3796–3802 (2007).
  • Uemura N, Okamoto S, Yamamoto S et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med.345(11), 784–789 (2001).
  • Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N. Engl. J. Med.323(18), 1228–1233 (1990).
  • Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut48(4), 526–535 (2001).
  • Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J. Hepatol.48(Suppl. 1), S20–S37 (2008).
  • Nakajima T, Maekita T, Oda I et al. Higher methylation levels in gastric mucosae significantly correlate with higher risk of gastric cancers. Cancer Epidemiol.Biomarkers Prev.15(11), 2317–2321 (2006).
  • Tahara T, Shibata T, Nakamura M et al. Increased number of CpG island hypermethylation in tumor suppressor genes of non-neoplastic gastric mucosa correlates with higher risk of gastric cancer. Digestion82(1), 27–36 (2010).
  • Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res.61(9), 3573–3577 (2001).
  • Nishida N, Nagasaka T, Nishimura T, Ikai I, Boland CR, Goel A. Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology47(3), 908–918 (2008).
  • Laird PW. The power and the promise of DNA methylation markers. Nat. Rev. Cancer3(4), 253–266 (2003).
  • No authors listed. NIH Consensus Conference. Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in Peptic Ulcer Disease. JAMA272(1), 65–69 (1994).
  • Parsonnet J, Friedman GD, Vandersteen DP et al.Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med.325(16), 1127–1131 (1991).
  • Huang JQ, Sridhar S, Chen Y et al. Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology114(6), 1169–1179 (1998).
  • Blaser MJ, Parsonnet J. Parasitism by the ‘slow’ bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J. Clin. Invest.94(1), 4–8 (1994).
  • Uemura N, Mukai T, Okamoto S et al. Effect of Helicobacter pylori eradication on subsequent development of cancer after endoscopic resection of early gastric cancer. Cancer Epidemiol.Biomarkers Prev.6(8), 639–642 (1997).
  • Wong BC, Lam SK, Wong WM et al. China Gastric Cancer Study Group. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA291(2), 187–194 (2004).
  • Hosokawa O, Tsuda S, Kidani E et al. Diagnosis of gastric cancer up to three years after negative upper gastrointestinal endoscopy. Endoscopy30(8), 721–773 (1998).
  • Wang M, Furuta T, Takashima M et al. Relation between interleukin-1β messenger RNA in gastric fundic mucosa and gastric juice pH in patients infected with Helicobacter pylori. J. Gastroenterol.34(Suppl. 11), 10–17 (1999).
  • Yamaoka Y, Kita M, Kodama T, Sawai N, Kashima K, Imanishi J. Induction of various cytokines and development of severe mucosal inflammation by cagA gene positive Helicobacter pylori strains. Gut41(4), 442–451 (1997).
  • Tamura G. Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer. World J. Gastroenterol.12(2), 192–198 (2006).
  • Kang GH, Shim YH, Jung HY, Kim WH, Ro JY, Rhyu MG. CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res.61(7), 2847–2851 (2001).
  • Kang GH, Lee HJ, Hwang KS, Lee S, Kim JH, Kim JS. Aberrant CpG island hypermethylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation. Am. J. Pathol.163(4), 1551–1556 (2003).
  • Maekita T, Nakazawa K, Mihara M et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin. Cancer. Res.12(3 Pt 1), 989–995 (2006).
  • Tahara T, Arisawa T, Shibata T et al. Increased number of methylated CpG islands correlates with Helicobacter pylori infection, histological and serological severity of chronic gastritis. Eur. J. Gastroenterol. Hepatol.21(6), 613–619 (2009).
  • Kaise M, Yamasaki T, Yonezawa J, Miwa J, Ohta Y, Tajiri H. CpG island hypermethylation of tumor-suppressor genes in H. pylori-infected non-neoplastic gastric mucosa is linked with gastric cancer risk. Helicobacter13(1), 35–41 (2008).
  • Yamamoto E, Toyota M, Suzuki H et al. LINE-1 hypomethylation is associated with increased CpG island methylation in Helicobacter pylori-related enlarged-fold gastritis. Cancer Epidemiol. Biomarkers Prev.17(10), 2555–2564 (2008).
  • Nakajima T, Enomoto S, Yamashita S et al. Persistence of a component of DNA methylation in gastric mucosae after Helicobacter pylori eradication. J. Gastroenterol.45(1), 37–44 (2010).
  • Head KA, Jurenka JS. Inflammatory bowel disease part I: ulcerative colitis – pathophysiology and conventional and alternative treatment options. Altern. Med. Rev.8(3), 247–283 (2003).
  • Askling J, Dickman PW, Karlen P et al. Family history as a risk factor for colorectal cancer in inflammatory bowel disease. Gastroenterology120(6), 1356–1362 (2001).
  • Nuako KW, Ahlquist DA, Mahoney DW et al. Familial predisposition for colorectal cancer in chronic ulcerative colitis: a case–control study. Gastroenterology115(5), 1079–1083 (1998).
  • Jayaram H, Satsangi J, Chapman RW. Increased colorectal neoplasia in chronic ulcerative colitis complicated by primary sclerosing cholangitis: fact or fiction? Gut48(3), 430–434 (2001).
  • Rutter MD, Saunders BP, Wilkinson KH et al. Cancer surveillance in longstanding ulcerative colitis: endoscopic appearances help predict cancer risk. Gut53(12), 1813–1816 (2004).
  • Hsieh CJ, Klump B, Holzmann K, Borchard F, Gregor M, Porschen R. Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Res.58(17), 3942–3945 (1998).
  • Fleisher AS, Esteller M, Harpaz N et al. Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res.60(17), 4864–4868 (2000).
  • Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol.287(1), G7–G17 (2004).
  • Rutter M, Saunders B, Wilkinson K et al. Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology126(2), 451–459 (2004).
  • Moriyama T, Matsumoto T, Nakamura S et al. Hypermethylation of p14 (ARF) may be predictive of colitic cancer in patients with ulcerative colitis. Dis. Colon. Rectum50(9), 1384–1392 (2007).
  • Wang FY, Arisawa T, Tahara T et al. Aberrant DNA methylation in ulcerative colitis without neoplasia. Hepatogastroenterology55(81), 62–65 (2008).
  • Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology140(6), 1704–1712 (2011).
  • Thompson AI, Lees CW. Genetics of ulcerative colitis. Inflamm. Bowel Dis.17(3), 831–848 (2011).
  • Di Girolamo N, Visvanathan K, Lloyd A, Wakefield D. Expression of TNFα by human plasma cells in chronic inflammation. J. Leukoc. Biol.61(6), 667–678 (1997).
  • Noguchi M, Hiwatashi N, Liu Z, Toyota T. Secretion imbalance between tumour necrosis factor and its inhibitor in inflammatory bowel disease. Gut43(2), 203–209 (1998).
  • Huang S, Ullrich SE, Bar-Eli M. Regulation of tumor growth and metastasis by interleukin-10: the melanoma experience. J. Interferon Cytokine Res.19(7), 697–703 (1999).
  • Zimmerman NP, Vongsa RA, Wendt MK, Dwinell MB. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflamm. Bowel Dis.14(7), 1000–1011 (2008).
  • Bollrath J, Phesse TJ, von Burstin VA et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell15(2), 91–102 (2009).
  • Grivennikov S, Karin E, Terzic J et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell15(2), 103–113 (2009).
  • Konishi K, Shen L, Wang S, Meltzer SJ, Harpaz N, Issa JP. Rare CpG island methylator phenotype in ulcerative colitis-associated neoplasias. Gastroenterology132(4), 1254–1260 (2007).
  • Fujii S, Tominaga K, Kitajima K et al. Methylation of the oestrogen receptor gene in non-neoplastic epithelium as a marker of colorectal neoplasia risk in longstanding and extensive ulcerative colitis. Gut54(9), 1287–1292 (2005).
  • Tominaga K, Fujii S, Mukawa K et al. Prediction of colorectal neoplasia by quantitative methylation analysis of estrogen receptor gene in nonneoplastic epithelium from patients with ulcerative colitis. Clin. Cancer Res.11(24 Pt 1), 8880–8885 (2005).
  • Garrity-Park MM, Loftus EV Jr, Sandborn WJ, Bryant SC, Smyrk TC. Methylation status of genes in non-neoplastic mucosa from patients with ulcerative colitis-associated colorectal cancer. Am. J. Gastroenterol.105(7), 1610–1619 (2010).
  • Saito S, Kato J, Hiraoka S et al. DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm. Bowel Dis.17(9), 1955–1965 (2011).
  • Tahara T, Shibata T, Nakamura M et al. Effect of MDR1 gene promoter methylation in patients with ulcerative colitis. Int. J. Mol. Med.23(4), 521–527 (2009).
  • Tahara T, Shibata T, Nakamura M et al. Promoter methylation of protease-activated receptor (PAR2) is associated with severe clinical phenotypes of ulcerative colitis (UC). Clin. Exp. Med.9(2), 125–130 (2009).
  • Neumann H, Vieth M, Langner C, Neurath MF, Mudter J. Cancer risk in IBD: how to diagnose and how to manage DALM and ALM. World J. Gastroenterol.17(27), 3184–3191 (2011).
  • Feitelson MA. Parallel epigenetic and genetic changes in the pathogenesis of hepatitis virus-associated hepatocellular carcinoma. Cancer Lett.239(1), 10–20 (2006).
  • Kondoh N, Wakatsuki T, Hada A et al. Genetic and epigenetic events in human hepatocarcinogenesis. Int. J. Oncol.18(6), 1271–1278 (2001).
  • Boyault S, Rickman DS, De Reynies A et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology45(1), 42–52 (2007).
  • Wong IH, Lo YM, Zhang J et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res.59(1), 71–73 (1999).
  • Zhang YJ, Ahsan H, Chen Y et al. High frequency of promoter hypermethylation of RASSF1A and p16 and its relationship to aflatoxin B1-DNA adduct levels in human hepatocellular carcinoma. Mol. Carcinog.35(2), 85–92 (2002).
  • Xiao WH, Liu WW. Hemizygous deletion and hypermethylation of RUNX3 gene in hepatocellular carcinoma. World J. Gastroenterol.10(3), 376–380 (2004).
  • Kanai Y, Ushijima S, Hui AM et al. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int. J. Cancer71(3), 355–359 (1997).
  • Zhong S, Tang MW, Yeo W, Liu C, Lo YM, Johnson PJ. Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin. Cancer Res.8(4), 1087–1092 (2002).
  • Yang B, Guo M, Herman JG, Clark DP. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am. J. Pathol.163(3), 1101–1107 (2003).
  • Shen L, Ahuja N, Shen Y et al. DNA methylation and environ mental exposures in human hepatocellular carcinoma. J. Natl Cancer Inst.94(10), 755–761 (2002).
  • Iwata N, Yamamoto H, Sasaki S et al. Frequent hypermethylation of CpG islands and loss of expression of the 14–3–3 σ gene in human hepatocellular carcinoma. Oncogene19(46), 5298–5302 (2000).
  • Kaneto H, Sasaki S, Yamamoto H et al. Detection of hypermethylation of the p16 (INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut48(3), 372–377 (2001).
  • Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology33(3), 561–568 (2001).
  • Su PF, Lee TC, Lin PJ et al. Differential DNA methylation associated with hepatitis B virus infection in hepatocellular carcinoma. Int. J. Cancer121(6), 1257–1264 (2007).
  • Jicai Z, Zongtao Y, Jun L, Haiping L, Jianmin W, Lihua H. Persistent infection of hepatitis B virus is involved in high rate of p16 methylation in hepatocellular carcinoma. Mol. Carcinog.45(7), 530–536 (2006).
  • Park IY, Sohn BH, Yu E et al. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology132(4), 1476–1494 (2007).
  • Deng YB, Nagae G, Midorikawa Y et al. Identification of genes preferentially methylated in hepatitis C virus-related hepatocellular carcinoma. Cancer Sci.101(6), 1501–1510 (2010).
  • Lim SO, Gu JM, Kim MS et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology135(6), 2128–2140 (2008).
  • Hartnett L, Egan LJ. Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis33(4), 723–731 (2012).
  • Ushijima T. Epigenetic field for cancerization. J. Biochem. Mol. Biol.40(2), 142–150 (2007).
  • Colella S, Shen L, Baggerly KA, Issa JP, Krahe R. Sensitive and quantitative universal pyrosequencing methylation analysis of CpG sites. Biotechniques35(1), 146–150 (2003).
  • Watanabe Y, Kim HS, Castoro RJ et al. Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes. Gastroenterology136(7), 2149–2158 (2009).
  • Kamimae S, Yamamoto E, Yamano HO et al. Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors. Cancer Prev. Res. (Phila.)4(5), 674–683 (2011).
  • Shin CM, Kim N, Jung Y et al. Genome-wide DNA methylation profiles in noncancerous gastric mucosae with regard to Helicobacter pylori infection and the presence of gastric cancer. Helicobacter16(3), 179–188 (2011).
  • Matsusaka K, Kaneda A, Nagae G et al. Classification of Epstein–Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res.71(23), 7187–7197 (2011).
  • Ando T, Yoshida T, Enomoto S et al. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int. J. Cancer124(10), 2367–2374 (2009).
  • Suzuki H, Yamamoto E, Nojima M et al. Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis31(12), 2066–2073 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.