294
Views
10
CrossRef citations to date
0
Altmetric
Review

Molecular diagnosis of leukemia

&
Pages 511-526 | Published online: 09 Jan 2014

References

  • Swerdlow SH, Campo E, Harris NL et al.World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues (4th Edition). IARC Press, Lyon, France (2008).
  • Craig FE, Foon KA. Flow cytometric immunophenotyping for haematologic neoplasms. Blood111(8), 3941–3967 (2008).
  • Maciejewski JP, Tiu RV, O’Keefe C. Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies. Br. J. Haematol.146(5), 479–488 (2009).
  • Betz BL, Hess JL. Acute myeloid leukemia diagnosis in the 21st century. Arch. Pathol. Lab. Med.134(10), 1427–1433 (2010).
  • Grimwade D. Impact of cytogenetics on clinical outcome in AML. In: Acute Myelogenous Leukemia. Karp JE (Ed.). Humana Press, NY, USA, 177–192 (2007).
  • Fabarius A, Leitner A, Hochhaus A et al.; Schweizerische Arbeitsgemeinschaft für Klinische Krebsforschung (SAKK) and the German CML study group. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML study IV. Blood118(26), 6760–6768 (2011).
  • Harrison CJ, Haas O, Harbott J et al. Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the Biology and Diagnosis Committee of the International Berlin–Frankfürt–Münster study group. Br. J. Haematol.151(2), 132–142 (2010).
  • Döhner H, Stilgenbauer S, Benner A et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med.343, 1910–1916 (2000).
  • Maciejewski JP, Mufti GJ. Whole genome scanning as a cytogenetic tool in hematologic malignancies. Blood112(4), 965–974 (2008).
  • Sargent R, Jones D, Abruzzo LV et al. Customized oligonucleotide array-based comparative genomic hybridization as a clinical assay for genomic profiling of chronic lymphocytic leukemia. J. Mol. Diagn.11, 25–34 (2009).
  • Hagenkord JM, Chang CC. The rewards and challenges of array-based karyotyping for clinical oncology applications. Leukemia23(5), 829–833 (2009).
  • Gunn S, Hibbard M, Ismail S et al. Atypical 11q deletions identified by array CGH may be missed by FISH panels for prognostic markers in chronic lymphocytic leukemia. Leukemia23, 1011–1017 (2009).
  • Tyybakinoja A, Vilpo J, Knuutila S. High-resolution oligonucleotide array-CGH pinpoints genes involved in cryptic losses in chronic lymphocytic leukemia. Cytogenet. Genome Res.118(1), 8–12 (2007).
  • Gunn SR, Bolla AR, Barron LL et al. Array CGH analysis of chronic lymphocytic leukemia reveals frequent cryptic monoallelic and biallelic deletions of chromosome 22q11 that include the PRAME gene. Leuk. Res.33(9), 1276–1281 (2009).
  • Engle LJ, Simpson CL, Landers JE. Using high-throughput SNP technologies to study cancer. Oncogene25(11), 1594–1601 (2006).
  • Gunnarsson R, Mansouri L, Isaksson A et al. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia. Haematologica96(8), 1161–1169 (2011).
  • Tan DS, Lambros MB, Natrajan R, Reis-Filho JS. Getting it right: designing microarray (and not ‘microawry’) comparative genomic hybridization studies for cancer research. Lab. Invest.87, 737–754 (2007).
  • Li X, Self SG, Galipeau PC, Paulson TG, Reid BJ. Direct inference of SNP heterozygosity rates and resolution of LOH detection. PLoS Comput. Biol.3(11), e244 (2007).
  • Griffiths M, Mason J, Rindl M et al. Acquired isodisomy for chromosome 13 is common in AML, and associated with FLT3-ITD mutations. Leukemia19(12), 2355–2358 (2005).
  • O’Keefe C, McDevitt MA, Maciejewski JP. Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies. Blood115(14), 2731–2739 (2010).
  • Raghavan M, Lillington DM, Skoulakis S et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res.65, 375–378 (2005).
  • Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood111(3), 1534–1542 (2008).
  • Dunbar AJ, Gondek LP, O’Keefe CL et al. 250K SNP array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res.68(24), 10349–10357 (2008).
  • Jankowska AM, Szpurka H, Tiu RV et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood113(25), 6403–6410 (2009).
  • Delhommeau F, Dupont S, Della Valle V et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med.360(22), 2289–2301 (2009).
  • Mullighan CG, Goorha S, Radtke I et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature446(7137), 758–764 (2007).
  • Kuiper RP, Schoenmakers EF, van Reijmersdal SV et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia21(6), 1258–1266 (2007).
  • Sulong S, Moorman AV, Irving JA et al. A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood113(1), 100–107 (2009).
  • Heinrichs S, Li C, Look AT. SNP array analysis in hematologic malignancies: avoiding false discoveries. Blood115(21), 4157–4161 (2010).
  • Haferlach T, Kohlmann A, Wieczorek L et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J. Clin. Oncol.28(15), 2529–2537 (2010).
  • Valk PJ, Verhaak RG, Beijen MA et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med.350(16), 1617–1628 (2004).
  • Wouters BJ, Löwenberg B, Delwel R. A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood113(2), 291–298 (2009).
  • Wouters BJ, Jordà MA, Keeshan K et al. Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood110(10), 3706–3714 (2007).
  • Bacher U, Kohlmann A, Haferlach T. Current status of gene expression profiling in the diagnosis and management of acute leukaemia. Br. J. Haematol.145(5), 555–568 (2009).
  • Mason J, Akiki S, Griffiths MJ. Pitfalls in molecular diagnosis in haemato-oncology. J. Clin. Pathol.64(4), 275–278 (2011).
  • van Dongen JJ, Macintyre EA, Gabert JA et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia13(12), 1901–1928 (1999).
  • Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques39(1), 75–85 (2005).
  • Bustin SA, Benes V, Garson JA et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem.55(4), 611–622 (2009).
  • van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia17(6), 1013–1034 (2003).
  • Gabert J, Beillard E, van der Velden VH et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer program. Leukemia17(12), 2318–2357 (2003).
  • Cazzaniga G, Valsecchi MG, Gaipa G, Conter V, Biondi A. Defining the correct role of minimal residual disease tests in the management of acute lymphoblastic leukaemia. Br. J. Haematol.155(1), 45–52 (2011).
  • van Dongen JJ, Langerak AW, Brüggemann M et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia17(12), 2257–2317 (2003).
  • van der Velden VH, van Dongen JJ. MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol. Biol.538, 115–150 (2009).
  • van der Velden VH, Cazzaniga G, Schrauder A et al. European study group on MRD detection in ALL (ESG-MRD-ALL). Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia21(4), 604–611 (2007).
  • Dworzak MN, Fröschl G, Printz D et al. Austrian Berlin-Frankfurt-Münster Study Group. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood99(6), 1952–1958 (2002).
  • Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucl. Acids Res.30(12), E57 (2002).
  • Preuner S, Denk D, Frommlet F, Nesslboeck M, Lion T. Quantitative monitoring of cell clones carrying point mutations in the BCR–ABL tyrosine kinase domain by ligation-dependent polymerase chain reaction (LD-PCR). Leukemia22(10), 1956–1961 (2008).
  • Vogelstein B, Kinzler KW. Digital PCR. Proc. Natl Acad. Sci. USA96(16), 9236–9241 (1999).
  • Goh HG, Lin M, Fukushima T et al. Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay. Leuk. Lymphoma52(5), 896–904 (2011).
  • Oehler VG, Qin J, Ramakrishnan R et al. Absolute quantitative detection of ABL tyrosine kinase domain point mutations in chronic myeloid leukemia using a novel nanofluidic platform and mutation-specific PCR. Leukemia23(2), 396–399 (2009).
  • Corless CL, Harrell P, Lacouture M et al. Allele-specific polymerase chain reaction for the imatinib-resistant KIT D816V and D816F mutations in mastocytosis and acute myelogenous leukemia. J. Mol. Diagn.8(5), 604–612 (2006).
  • Kristensen T, Vestergaard H, Møller MB. Improved detection of the KIT D816V mutation in patients with systemic mastocytosis using a quantitative and highly sensitive real-time qPCR assay. J. Mol. Diagn.13(2), 180–188 (2011).
  • Milbury CA, Li J, Liu P, Makrigiorgos GM. COLD-PCR: improving the sensitivity of molecular diagnostics assays. Expert Rev. Mol. Diagn.11(2), 159–169 (2011).
  • Li J, Wang L, Mamon H, Kulke MH, Berbeco R, Makrigiorgos GM. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat. Med.14(5), 579–584 (2008).
  • Abu-Duhier FM, Goodeve AC, Wilson GA et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br. J. Haematol.111(1), 190–195 (2000).
  • Falini B, Mecucci C, Tiacci E et al. Cytoplasmic nucleophosmin (NPM) identifies a subtype of acute myelogenous leukemia with a normal karyotype and NPM1 gene mutations. N. Engl. J. Med.352, 254–266 (2005).
  • Noguera NI, Ammatuna E, Zangrilli D et al. Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia. Leukemia19(8), 1479–1482 (2005).
  • Baxter EJ, Scott LM, Campbell PJ et al. Cancer genome project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet365(9464), 1054–1061 (2005).
  • Tiacci E, Trifonov V, Schiavoni G et al. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med.364(24), 2305–2315 (2011).
  • Tiacci E, Schiavoni G, Forconi F et al. Simple genetic diagnosis of hairy cell leukemia by sensitive detection of the BRAF-V600E mutation. Blood119(1), 192–195 (2012).
  • Jones AV, Kreil S, Zoi K et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood106(6), 2162–2168 (2005).
  • Steensma DP. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on molecular pathology. J. Mol. Diagn.8(4), 397–411 (2006).
  • Jones AV, Cross NC, White HE, Green AR, Scott LM. Rapid identification of JAK2 exon 12 mutations using high resolution melting analysis. Haematologica93(10), 1560–1564 (2008).
  • Boyd EM, Bench AJ, van’t Veer MB et al. High resolution melting analysis for detection of BRAF exon 15 mutations in hairy cell leukaemia and other lymphoid malignancies. Br. J. Haematol.155(5), 609–612 (2011).
  • Bullinger L, Ehrich M, Döhner K et al. Quantitative DNA methylation predicts survival in adult acute myeloid leukemia. Blood115(3), 636–642 (2010).
  • Lennerz JK, Klaus BM, Marienfeld RB, Möller P. Pyrosequencing of BRAF V600E in routine samples of hairy cell leukaemia identifies CD5+ variant hairy cell leukaemia that lacks V600E. Br. J. Haematol.157(2), 267–269 (2011).
  • Zhao W, Bueso-Ramos CE, Verstovsek S, Barkoh BA, Khitamy AA, Jones D. Quantitative profiling of codon 816 KIT mutations can aid in the classification of systemic mast cell disease. Leukemia21(7), 1574–1576 (2007).
  • Alikian M, Gerrard G, Subramanian PG et al. BCR–ABL1 kinase domain mutations: methodology and clinical evaluation. Am. J. Hematol.87(3), 298–304 (2011).
  • Shendure J, Ji H. Next-generation DNA sequencing. Nat. Biotechnol.26(10), 1135–1145 (2008).
  • ten Bosch JR, Grody WW. Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J. Mol. Diagn.10(6), 484–492 (2008).
  • Metzker ML. Sequencing technologies – the next generation. Nat. Rev. Genet.11(1), 31–46 (2010).
  • Su Z, Ning B, Fang H et al. Next-generation sequencing and its applications in molecular diagnostics. Expert Rev. Mol. Diagn.11(3), 333–343 (2011).
  • Natrajan R, Reis-Filho JS. Next-generation sequencing applied to molecular diagnostics. Expert Rev. Mol. Diagn.11(4), 425–444 (2011).
  • Ross JS, Cronin M. Whole cancer genome sequencing by next-generation methods. Am. J. Clin. Pathol.136(4), 527–539 (2011).
  • Ley TJ, Mardis ER, Ding L et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature456, 66–72 (2008).
  • Mardis ER, Ding L, Dooling DJ et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med.361, 1058–1066 (2009).
  • Schnittger S, Haferlach C, Ulke M, Alpermann T, Kern W, Haferlach T. IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood116(25), 5486–5496 (2010).
  • Yamashita Y, Yuan J, Suetake I et al. Array-based genomic resequencing of human leukemia. Oncogene29(25), 3723–3731 (2010).
  • Ley TJ, Ding L, Walter MJ et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med.363(25), 2424–2243 (2010).
  • Yan XJ, Xu J, Gu ZH et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat. Genet.43(4), 309–315 (2011).
  • Ding L, Ley TJ, Larson DE et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature481(7382), 506–510 (2012).
  • Walter MJ, Shen D, Ding L et al. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med.366(12), 1090–1098 (2012).
  • Puente XS, Pinyol M, Quesada V et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature475(7354), 101–105 (2011).
  • Wang L, Lawrence MS, Wan Y et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med.365(26), 2497–2506 (2011).
  • Frohling S, Scholl C, Levine RL et al. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell.12, 501–513 (2007).
  • Grossmann V, Schnittger S, Schindela S et al. Strategy for robust detection of insertions, deletions, and point mutations in CEBPA, a GC-rich content gene, using 454 next-generation deep-sequencing technology. J. Mol. Diagn.13(2), 129–136 (2011).
  • Kohlmann A, Klein HU, Weissmann S et al. The Interlaboratory Robustness of Next-Generation Sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia25(12), 1840–1848 (2011).
  • Welch JS, Link DC. Genomics of AML: clinical applications of next-generation sequencing. Hematol. Am. Soc. Hematol. Educ. Program.2011, 30–35 (2011).
  • Holden MJ, Madej RM, Minor P, Kalman LV. Molecular diagnostics: harmonization through reference materials, documentary standards and proficiency testing. Expert Rev. Mol. Diagn.11(7), 741–755 (2011).
  • Patel JP, Gönen M, Figueroa ME et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med.366(12), 1079–1089 (2012).
  • Godley LA. Profiles in leukemia. N. Engl. J. Med.366(12), 1152–1153 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.