117
Views
13
CrossRef citations to date
0
Altmetric
Review

Hotspot oncomutations: implications for personalized cancer treatment

, , &
Pages 603-620 | Published online: 09 Jan 2014

References

  • McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting Recommendations For Tumor Marker Prognostic Studies (REMARK). Nat. Clin. Pract. Oncol.2(8), 416–422 (2005).
  • Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer7(4), 295–308 (2007).
  • Andreyev HJ, Norman AR, Cunningham D, Oates JR, Clarke PA. Kirsten RAS mutations in patients with colorectal cancer: the multicenter ‘RASCAL’ study. J. Natl Cancer Inst.90(9), 675–684 (1998).
  • Andreyev HJ, Norman AR, Cunningham D et al. Kirsten RAS mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br. J. Cancer85(5), 692–696 (2001).
  • Parsons BL, Meng F. K-RAS mutation in the screening, prognosis and treatment of cancer. Biomark. Med.3(6), 757–769 (2009).
  • Mascaux C, Iannino N, Martin B et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br. J. Cancer92(1), 131–139 (2005).
  • Brugger W, Triller N, Blasinska-Morawiec M et al. Prospective molecular marker analyses of EGFR and KRAS from a randomized, placebo-controlled study of erlotinib maintenance therapy in advanced non-small-cell lung cancer. J. Clin. Oncol.29(31), 4113–4120 (2011).
  • Liu HP, Isaac Wu HD, Chang JW et al. Prognostic implications of epidermal growth factor receptor and KRAS gene mutations and epidermal growth factor receptor gene copy numbers in patients with surgically resectable non-small cell lung cancer in Taiwan. J. Thorac. Oncol.5(8), 1175–1184 (2010).
  • Marks JL, Broderick S, Zhou Q et al. Prognostic and therapeutic implications of EGFR and KRAS mutations in resected lung adenocarcinoma. J. Thorac. Oncol.3(2), 111–116 (2008).
  • Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N. Engl. J. Med.358(11), 1160–1174 (2008).
  • Amado RG, Wolf M, Peeters M et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol.26(10), 1626–1634 (2008).
  • Karapetis CS, Khambata-Ford S, Jonker DJ et al.K-RAS mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med.359(17), 1757–1765 (2008).
  • De Roock W, Claes B, Bernasconi D et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol.11(8), 753–762 (2010).
  • Peeters M, Price TJ, Cervantes A et al. Randomized Phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J. Clin. Oncol.28(31), 4706–4713 (2010).
  • Bokemeyer C, Bondarenko I, Hartmann JT et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann. Oncol.22(7), 1535–1546 (2011).
  • Douillard JY, Siena S, Cassidy J et al. Randomized, Phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J. Clin. Oncol.28(31), 4697–4705 (2010).
  • Van Cutsem E, Kohne CH, Lang I et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol.29(15), 2011–2019 (2011).
  • Linardou H, Dahabreh IJ, Kanaloupiti D et al. Assessment of somatic K-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol.9(10), 962–972 (2008).
  • De Roock W, Jonker DJ, Di Nicolantonio F et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA304(16), 1812–1820 (2010).
  • Molinari F, Felicioni L, Buscarino M et al. Increased detection sensitivity for KRAS mutations enhances the prediction of anti-EGFR monoclonal antibody resistance in metastatic colorectal cancer. Clin. Cancer Res.17(14), 4901–4914 (2011).
  • Modest DP, Jung A, Moosmann N et al. The influence of KRAS and BRAF mutations on the efficacy of cetuximab-based first-line therapy of metastatic colorectal cancer: an analysis of the AIO KRK-0104-trial. Int. J. Cancer131(4), 980–986 (2012).
  • Ogino S, Meyerhardt JA, Irahara N et al.KRAS mutation in stage III colon cancer and clinical outcome following intergroup trial CALGB 89803. Clin. Cancer Res.15(23), 7322–7329 (2009).
  • Roth AD, Tejpar S, Delorenzi M et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60–00 trial. J. Clin. Oncol.28(3), 466–474 (2010).
  • Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ. The prognostic significance of K-RAS, p53, and APC mutations in colorectal carcinoma. Gut54(9), 1283–1286 (2005).
  • Richman SD, Seymour MT, Chambers P et al.KRAS and KRAS mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J. Clin. Oncol.27(35), 5931–5937 (2009).
  • Yokota T, Ura T, Shibata N et al.KRAS mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. Br. J. Cancer104(5), 856–862 (2011).
  • Douillard JY, Shepherd FA, Hirsh V et al. Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized Phase III INTEREST trial. J. Clin. Oncol.28(5), 744–752 (2010).
  • Eberhard DA, Johnson BE, Amler LC et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol.23(25), 5900–5909 (2005).
  • Han SW, Kim TY, Jeon YK et al. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-RAS mutation, and Akt phosphorylation. Clin. Cancer Res.12(8), 2538–2544 (2006).
  • Massarelli E, Varella-Garcia M, Tang X et al.KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin. Cancer Res.13(10), 2890–2896 (2007).
  • Pao W, Wang TY, Riely GJ et al.KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med.2(1), e17 (2005).
  • Schneider CP, Heigener D, Schott-von-Romer K et al. Epidermal growth factor receptor-related tumor markers and clinical outcomes with erlotinib in non-small cell lung cancer: an analysis of patients from german centers in the TRUST study. J. Thorac. Oncol.3(12), 1446–1453 (2008).
  • Marchetti A, Milella M, Felicioni L et al. Clinical implications of KRAS mutations in lung cancer patients treated with tyrosine kinase inhibitors: an important role for mutations in minor clones. Neoplasia11(10), 1084–1092 (2009).
  • Khambata-Ford S, Harbison CT, Hart LL et al. Analysis of potential predictive markers of cetuximab benefit in BMS099, a Phase III study of cetuximab and first-line taxane/carboplatin in advanced non-small-cell lung cancer. J. Clin. Oncol.28(6), 918–927 (2010).
  • O’Byrne KJ, Gatzemeier U, Bondarenko I et al. Molecular biomarkers in non-small-cell lung cancer: a retrospective analysis of data from the Phase 3 FLEX study. Lancet Oncol.12(8), 795–805 (2011).
  • Marchetti A, Felicioni L, Malatesta S et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring KRAS mutations. J. Clin. Oncol.29(26), 3574–3579 (2011).
  • Maemondo M, Inoue A, Kobayashi K et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med.362(25), 2380–2388 (2010).
  • Mitsudomi T, Morita S, Yatabe Y et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised Phase 3 trial. Lancet Oncol.11(2), 121–128 (2010).
  • Kosaka T, Yatabe Y, Onozato R, Kuwano H, Mitsudomi T. Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. J. Thorac. Oncol.4(1), 22–29 (2009).
  • da Cunha Santos G, Dhani N, Tu D et al. Molecular predictors of outcome in a Phase 3 study of gemcitabine and erlotinib therapy in patients with advanced pancreatic cancer: National Cancer Institute of Canada Clinical Trials Group Study PA.3. Cancer116(24), 5599–5607 (2010).
  • Kim ST, Lim do H, Jang KT et al. Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Mol. Cancer Ther.10(10), 1993–1999 (2011).
  • Caronia LM, Phay JE, Shah MH. Role of KRAS in thyroid oncogenesis. Clin. Cancer Res.17(24), 7511–7517 (2011).
  • Kim TH, Park YJ, Lim JA et al. The association of the KRAS(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer118(7), 1764–1773 (2012).
  • Di Nicolantonio F, Martini M, Molinari F et al. Wild-type KRAS is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol.26(35), 5705–5712 (2008).
  • Loupakis F, Ruzzo A, Cremolini C et al.KRAS codon 61, 146 and KRAS mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br. J. Cancer101(4), 715–721 (2009).
  • Laurent-Puig P, Cayre A, Manceau G et al. Analysis of PTEN, KRAS, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J. Clin. Oncol.27(35), 5924–5930 (2009).
  • Farina-Sarasqueta A, van Lijnschoten G, Moerland E et al. The KRAS V600E mutation is an independent prognostic factor for survival in stage II and stage III colon cancer patients. Ann. Oncol.21(12), 2396–2402 (2010).
  • Ogino S, Nosho K, Kirkner GJ et al. CpG island methylator phenotype, microsatellite instability, KRAS mutation and clinical outcome in colon cancer. Gut58(1), 90–96 (2009).
  • Tol J, Dijkstra JR, Klomp M et al. Markers for EGFR pathway activation as predictor of outcome in metastatic colorectal cancer patients treated with or without cetuximab. Eur. J. Cancer46(11), 1997–2009 (2010).
  • Long GV, Menzies AM, Nagrial AM et al. Prognostic and clinicopathologic associations of oncogenic KRAS in metastatic melanoma. J. Clin. Oncol.29(10), 1239–1246 (2011).
  • Flaherty KT, Puzanov I, Kim KB et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med.363(9), 809–819 (2010).
  • Chapman PB, Hauschild A, Robert C et al. Improved survival with vemurafenib in melanoma with KRAS V600E mutation. N. Engl. J. Med.364(26), 2507–2516 (2011).
  • Rubinstein JC, Sznol M, Pavlick AC et al. Incidence of the V600K mutation among melanoma patients with KRAS mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. J. Transl. Med.8, 67 (2010).
  • Carnahan J, Beltran PJ, Babij C et al. Selective and potent Raf inhibitors paradoxically stimulate normal cell proliferation and tumor growth. Mol. Cancer Ther.9(8), 2399–2410 (2010).
  • Hatzivassiliou G, Song K, Yen I et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature464(7287), 431–435 (2010).
  • Heidorn SJ, Milagre C, Whittaker S et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell140(2), 209–221 (2010).
  • Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type KRAS. Nature464(7287), 427–430 (2010).
  • Oberholzer PA, Kee D, Dziunycz P et al.RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol.30(3), 316–321 (2012).
  • Arnault JP, Mateus C, Escudier B et al. Skin tumors induced by sorafenib; paradoxic RAS–RAF pathway activation and oncogenic mutations of HRAS, TP53, and TGFBR1. Clin. Cancer Res.18(1), 263–272 (2012).
  • Su F, Viros A, Milagre C et al.RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med.366(3), 207–215 (2012).
  • Parsons BL, Marchant-Miros KE, Delongchamp RR et al. ACB–PCR quantification of K-RAS codon 12 GAT and GTT mutant fraction in colon tumor and non-tumor tissue. Cancer Invest.28(4), 364–375 (2010).
  • Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer7(3), 169–181 (2007).
  • Shigematsu H, Lin L, Takahashi T et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J. Natl Cancer Inst.97(5), 339–346 (2005).
  • Zhou C, Wu YL, Chen G et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, Phase 3 study. Lancet Oncol.12(8), 735–742 (2011).
  • Riely GJ, Pao W, Pham D et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin. Cancer Res.12(3 Pt 1), 839–844 (2006).
  • Rosell R, Moran T, Queralt C et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med.361(10), 958–967 (2009).
  • Won YW, Han JY, Lee GK et al. Comparison of clinical outcome of patients with non-small-cell lung cancer harbouring epidermal growth factor receptor exon 19 or exon 21 mutations. J. Clin. Pathol.64(11), 947–952 (2011).
  • Kosaka T, Yatabe Y, Endoh H et al. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin. Cancer Res.12(19), 5764–5769 (2006).
  • Pao W, Miller VA, Politi KA et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med.2(3), e73 (2005).
  • Sequist LV, Waltman BA, Dias-Santagata D et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med.3(75), 75ra26 (2011).
  • Balak MN, Gong Y, Riely GJ et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin. Cancer Res.12(21), 6494–6501 (2006).
  • Bean J, Riely GJ, Balak M et al. Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin. Cancer Res.14(22), 7519–7525 (2008).
  • Costa DB, Schumer ST, Tenen DG, Kobayashi S. Differential responses to erlotinib in epidermal growth factor receptor (EGFR)-mutated lung cancers with acquired resistance to gefitinib carrying the L747S or T790M secondary mutations. J. Clin. Oncol.26(7), 1182–1184; author reply 1184–1186 (2008).
  • Inukai M, Toyooka S, Ito S et al. Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res.66(16), 7854–7858 (2006).
  • Maheswaran S, Sequist LV, Nagrath S et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med.359(4), 366–377 (2008).
  • Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc. Natl Acad. Sci. USA105(7), 2652–2657 (2008).
  • Saal LH, Holm K, Maurer M et al.PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res.65(7), 2554–2559 (2005).
  • Stemke-Hale K, Gonzalez-Angulo AM, Lluch A et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res.68(15), 6084–6091 (2008).
  • Li SY, Rong M, Grieu F, Iacopetta B. PIK3CA mutations in breast cancer are associated with poor outcome. Breast Cancer Res. Treat.96(1), 91–95 (2006).
  • Lai YL, Mau BL, Cheng WH, Chen HM, Chiu HH, Tzen CY. PIK3CA exon 20 mutation is independently associated with a poor prognosis in breast cancer patients. Ann. Surg. Oncol.15(4), 1064–1069 (2008).
  • Barbareschi M, Buttitta F, Felicioni L et al. Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin. Cancer Res.13(20), 6064–6069 (2007).
  • Berns K, Horlings HM, Hennessy BT et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell12(4), 395–402 (2007).
  • Razis E, Bobos M, Kotoula V et al. Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer. Breast Cancer Res. Treat.128(2), 447–456 (2011).
  • Ogino S, Nosho K, Kirkner GJ et al.PIK3CA mutation is associated with poor prognosis among patients with curatively resected colon cancer. J. Clin. Oncol.27(9), 1477–1484 (2009).
  • Sartore-Bianchi A, Martini M, Molinari F et al.PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res.69(5), 1851–1857 (2009).
  • Souglakos J, Philips J, Wang R et al. Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br. J. Cancer101(3), 465–472 (2009).
  • Prenen H, De Schutter J, Jacobs B et al.PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin. Cancer Res.15(9), 3184–3188 (2009).
  • Ludovini V, Bianconi F, Pistola L et al. Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. J. Thorac. Oncol.6(4), 707–715 (2011).
  • Bando H, Yoshino T, Tsuchihara K et al.KRAS mutations detected by the amplification refractory mutation system-Scorpion assays strongly correlate with therapeutic effect of cetuximab. Br. J. Cancer105(3), 403–406 (2011).
  • Arcila ME, Oxnard GR, Nafa K et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin. Cancer Res.17(5), 1169–1180 (2011).
  • Jahn SW, Winter G, Stacher E et al. Multiple intratumoral KRAS mutations can clonally segregate to different lymph node metastases in colon cancer. Histopathology59(2), 342–345 (2011).
  • Lamy A, Blanchard F, Le Pessot F et al. Metastatic colorectal cancer KRAS genotyping in routine practice: results and pitfalls. Mod. Pathol.24(8), 1090–1100 (2011).
  • Li Z, Jin K, Lan H, Teng L. Heterogeneity in primary colorectal cancer and its corresponding metastases: a potential reason of EGFR-targeted therapy failure? Hepatogastroenterology58(106), 411–416 (2011)
  • Jin K, He K, Teng F et al. Heterogeneity in primary tumors and corresponding metastases: could it provide us with any hints to personalize cancer therapy? Pers. Med.8(2), 175–182 (2011).
  • Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE. Prevalence and heterogeneity of KRAS, KRAS, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin. Cancer Res.16(3), 790–799 (2010).
  • Jensen JD, Laenkholm AV, Knoop A et al.PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin. Cancer Res.17(4), 667–677 (2011).
  • Roesch A, Fukunaga-Kalabis M, Schmidt EC et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell141(4), 583–594 (2010).
  • Rebecca VW, Smalley KS. Tumor heterogeneity and strategies to overcome kinase inhibitor resistance in cancer: lessons from melanoma. Expert Opin. Invest. Drugs20(2), 137–140 (2011).
  • Dieterle CP, Conzelmann M, Linnemann U, Berger MR. detection of isolated tumor cells by polymerase chain reaction-restriction fragment length polymorphism for K-RAS mutations in tissue samples of 199 colorectal cancer patients. Clin. Cancer Res.10(2), 641–650 (2004).
  • Thirlwell C, Will OCC, Domingo E et al. clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology138(4), 1441–1454.e1447 (2010).
  • Navin N, Krasnitz A, Rodgers L et al. Inferring tumor progression from genomic heterogeneity. Genome Res.20(1), 68–80 (2010).
  • Navin N, Kendall J, Troge J et al. Tumour evolution inferred by single-cell sequencing. Nature472(7341), 90–95 (2011).
  • Jones S, Chen WD, Parmigiani G et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA105(11), 4283–4288 (2008).
  • Grunewald TG, Herbst SM, Heinze J, Burdach S. Understanding tumor heterogeneity as functional compartments – superorganisms revisited. J. Transl. Med.9, 79 (2011).
  • Parsons BL. Many different tumor types have polyclonal tumor origin: evidence and implications. Mut. Res.659(3), 232–247 (2008).
  • Novelli M, Cossu A, Oukrif D et al. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc. Natl Acad. Sci. USA100(6), 3311–3314 (2003).
  • Visvader JE. Cells of origin in cancer. Nature469(7330), 314–322 (2011).
  • Dai D, Beck B, Wang X, Howk C, Li Y. Quantitative interpretation of a genetic model of carcinogenesis using computer simulations. PloS ONE6(3), e16859 (2011).
  • Durrett R, Foo J, Leder K, Mayberry J, Michor F. Intratumor heterogeneity in evolutionary models of tumor progression. Genetics188(2), 461–477 (2011).
  • Wu M, Pastor-Pareja JC, Xu T. Interaction between RasV12 and scribbled clones induces tumour growth and invasion. Nature463(7280), 545–548 (2010).
  • Inda MM, Bonavia R, Mukasa A et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev.24, 1731–1745 (2011).
  • Bonavia R, Inda MD, Cavenee WK, Furnari FB. Heterogeneity maintenance in glioblastoma: a social network. Cancer Res.71(12), 4055–4060 (2011).
  • Tarin D. Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance. Semin. Cancer Biol.21(2), 72–82 (2011).
  • Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med.17(3), 320–329 (2011).
  • Parsons BL, Myers MB, Meng F, Wang Y, McKinzie PB. Oncomutations as biomarkers of cancer risk. Environ. Mol. Mutagen.51(8–9), 836–850 (2010).
  • Sartore-Bianchi A, Bencardino K, Cassingena A et al. Therapeutic implications of resistance to molecular therapies in metastatic colorectal cancer. Cancer Treat. Rev.36(Suppl. 3), S1–S5 (2010).
  • Heng HH, Liu G, Stevens JB, Bremer SW, Ye KJ, Ye CJ. Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy. Curr. Drug Targets11(10), 1304–1316 (2010).
  • MacConaill LE, Hummelen PV, Meyerson M, Hahn WC. Clinical implementation of comprehensive strategies to characterize cancer genomes: opportunities and challenges. Cancer Discov.1, 297–311 (2011).
  • Andersen MH, Junker N, Ellebaek E, Svane IM, Thor Straten P. Therapeutic cancer vaccines in combination with conventional therapy. J. Biomed. Biotechnol.2010, 237623 (2010).
  • Mumenthaler SM, Foo J, Leder K et al. Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Mol. Pharm.8(6), 2069–2079 (2011).
  • Ding L, Ellis MJ, Li S et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature464(7291), 999–1005 (2010).
  • Rebersek M, Boc M, Cerkovnik P et al. Efficacy of first-line systemic treatment in correlation with KRAS V600E and different KRAS mutations in metastatic colorectal cancer – a single institution retrospective analysis. Radiol. Oncol.45(4), 285–291 (2011).
  • Janku F, Tsimberidou AM, Garrido-Laguna I et al.PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther.10(3), 558–565 (2011).
  • Felip E, Gridelli C, Baas P, Rosell R, Stahel R. Metastatic non-small-cell lung cancer: consensus on pathology and molecular tests, first-line, second-line, and third-line therapy 1st ESMO Consensus Conference in Lung Cancer; Lugano 2010. Ann. Oncol.22(7), 1507–1519 (2011).
  • McKinzie PB, Delongchamp RR, Heflich RH, Parsons BL. Prospects for applying genotypic selection of somatic oncomutation to chemical risk assessment. Mut. Res.489(1), 47–78 (2001).
  • Wang HL, Lopategui J, Amin MB, Patterson SD. KRAS mutation testing in human cancers: the pathologist’s role in the era of personalized medicine. Adv. Anat. Pathol.17(1), 23–32 (2010).
  • Blank PR, Moch H, Szucs TD, Schwenkglenks M. KRAS and KRAS mutation analysis in metastatic colorectal cancer: a cost–effectiveness analysis from a Swiss perspective. Clin. Cancer Res.17(19), 6338–6346 (2011).
  • Carotenuto P, Roma C, Rachiglio AM et al. Detection of KRAS mutations in colorectal carcinoma patients with an integrated PCR/sequencing and real-time PCR approach. Pharmacogenomics11(8), 1169–1179 (2010).
  • Ogino S, Kawasaki T, Brahmandam M et al. Sensitive sequencing method for KRAS mutation detection by pyrosequencing. J. Mol. Diagn.7(3), 413–421 (2005).
  • Walther Z, Sklar J. Molecular tumor profiling for prediction of response to anticancer therapies. Cancer J.17(2), 71–79 (2011).
  • Ma ES, Wong CL, Law FB, Chan WK, Siu D. Detection of KRAS mutations in colorectal cancer by high-resolution melting analysis. J. Clin. Pathol.62(10), 886–891 (2009).
  • Thunnissen E, Bovee JV, Bruinsma H et al. EGFR and KRAS quality assurance schemes in pathology: generating normative data for molecular predictive marker analysis in targeted therapy. J. Clin. Pathol.64(10), 884–892 (2011).
  • Kwon MJ, Lee SE, Kang SY, Choi YL. Frequency of KRAS, KRAS, and PIK3CA mutations in advanced colorectal cancers: comparison of peptide nucleic acid-mediated PCR clamping and direct sequencing in formalin-fixed, paraffin-embedded tissue. Pathol. Res. Pract.207(12), 762–768 (2011).
  • Shen Y, Wan Z, Coarfa C et al. A SNP discovery method to assess variant allele probability from next-generation resequencing data. Genome Res.20(2), 273–280 (2010).
  • Gundry M, Vijg J. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants. Mutat. Res.729(1–2), 1–15 (2012).
  • Bell D, Berchuck A, Birrer M et al. Integrated genomic analyses of ovarian carcinoma. Nature474(7353), 609–615 (2011).
  • Board RE, Thelwell NJ, Ravetto PF et al. Multiplexed assays for detection of mutations in PIK3CA. Clin. Chem.54(4), 757–760 (2008).
  • Horiike A, Kimura H, Nishio K et al. Detection of epidermal growth factor receptor mutation in transbronchial needle aspirates of non-small cell lung cancer. Chest131(6), 1628–1634 (2007).
  • Tol J, Dijkstra JR, Vink-Borger ME et al. High sensitivity of both sequencing and real-time PCR analysis of KRAS mutations in colorectal cancer tissue. J. Cell. Mol. Med.14(8), 2122–2131 (2010).
  • Kitano S, Nakayama M, Yamane A, Tsukahara Y, Amano M. Detection of DNA mutations by fluorescence resonance energy transfer-based preferential homoduplex formation assay. Anal. Biochem.408(2), 197–205 (2011).
  • Tatsumi K, Mitani Y, Watanabe J et al. Rapid screening assay for KRAS mutations by the modified smart amplification process. J. Mol. Diagn.10(6), 520–526 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.